993 resultados para Dispersed repetitive sequence family
Resumo:
We examine the patterns of sex allocation in crimson rosellas Platycercus elegans, a socially monogamous Australian parrot. Overall, 41.8% of nestlings were male, a significant female bias. However underlying this population-level bias were non-random patterns of sex allocation within broods. Broods produced early in the season were female-biased, but the proportion of males in a brood increased as the breeding season progressed. Female rosellas may obtain greater fitness benefits from early-fledging daughters than sons because daughters can breed as 1-year-olds whereas sons do not breed until they are at least 2 years old. Laying date and laying sequence also interacted to influence the sex ratio of eggs. The sex of early-laid eggs strongly followed the brood level pattern, whereas the sex of middle- and late-laid eggs did not change significantly as the season progressed. Nevertheless, late-laid eggs were very unlikely to be male at the end of the season. We argue these differing seasonal patterns reflect the relative costs and benefits to producing early-hatched males and females at different times of the season. Female rosellas appear to maximise the probability that daughters are able to breed early but to minimise competitive asymmetries within the brood. In particular, late-hatched male chicks are disadvantaged if their oldest sibling is male, explaining the dearth of broods containing late-hatched males at the end of the breeding season.
Resumo:
The reproductive structures of the downy-mildew fungi, Peronosclerospora noblei and Peronosclerospora eriochloae, develop only on chlorotic leaves of tall, vegetative tillers of the perennial grasses Sorghum leiocladum (wild sorghum) and Eriochloa pseudoacrotricha (early spring grass), respectively. They are never found on the leaves of flowering tillers, even when tillers of both types grow from the same tussock. The development of symptoms on infected tillers of both hosts and the morphological and anatomical changes to host tissues on infected tillers are detailed.
Resumo:
Three Bahama-like carbonate plaforms-the Guilin, Yangshuo and Yanshan-occurred in Guilin and the surrounding regions during Middle and Late Devonian, which, at a broad scale, are part of an extensive carbonate platform (Xiangzhou carbonate platform) facies in South China. The intraplatform depression facies, a unique characteristic of the Chinese Devonian depositional sequence, separates Bahama-like (platform-to-depression) carbonate subplatfonns. Intraplatform depressions resulted from syndepositional faulting that cut the basement of carbonate subplatforms and affected further platform development. The Liangshuijing section, located between the Guilin platform in the north and the Yangshuo platform in the south, is representative of the fore-reef slope facies neighboring an intraplatform. depression. The South edge of the fore-reef slope lies adjacent to the Yangshuo reef carbonate platform, and the north edge graded into the Yangdi pelagic depression facies. A detailed sedimentary and microfacies analysis work done in this study at the Liangshuijing section shows a distinct vertical facies change from back-reef, restricted platform, hemipelagic, to fore-reefslope facies, differing from either shallow-water benthic facies or typical pelagic facies. Various benthic and pelagic lithofacies and their associations have been recognized in the Liangshuijing section, including dolomitic rudstone, gastropod wackestone, Amphipora floatstone, tentaculitoid wackestone, stromatolite and oncoid limestone, Amphipora grainstone, grain flows, laminated limestone, flat-pebble and brachiopod floatstone, and carbonate turbidites. Eight types of sedimentary cycles composed of two or three lithofacies have been distinguished, which are able to indicate environment changes. Stromatolites, oncoids, grain flows, carbonate turbidites, and tentaculitoid limestones characterize the slope and intraplatform depression lithofacies. Analysis of the vertical sedimentary cycles in the Liangshuijinag section and the lateral stratigraphic equivalents suggest the differing facies patterns occurred at the middle Varcus Zone (Givetian) of Middle Devonian, coeval with the development of fore-reef slope facies in the Guilin area in response to syndeposifional faulting.
Resumo:
ITS2 sequences are used extensively in molecular taxonomy and population genetics of arthropods and other animals yet little is known about the molecular evolution of ITS2. We studied the secondary structure of ITS2 in species from each of the six main lineages of hard ticks (family Ixodidae). The ITS2 of these ticks varied in length from 679 bp in Ixodes scapularis to 1547 bp in Aponomma concolor. Nucleotide content varied also: the ITS2 of ticks from the Prostriata lineage (Ixodes spp.) had 46-49% GC whereas ITS2 sequences of ticks from the Metastriata lineage (all other hard ticks) had 61-62% GC. Despite variation in nucleotide sequence, the secondary structure of the ITS2 of all of these ticks apparently has five domains. Stems 1, 3, 4 and 5 of this secondary structure were obvious in all of the species studied. However, stem 2 was not always obvious despite the fact that it is flanked by highly conserved sequence motifs in the adjacent stems, stems 1 and 3. The ITS2 of hard ticks has apparently evolved mostly by increases and decreases in length of the nucleotide sequences, which caused increases, and decreases in the length of stems of the secondary structure. This is most obvious when stems of the secondary structures of the Prostriata (Ixodes spp.) are compared to those of the Metastriata (all other hard ticks). Increases in the size of the ITS2 may have been caused by replication slippage which generated large repeats, like those seen in Haemaphysalis humerosa and species from the Rhipicepalinae lineage, and the small repeats found in species from the other lineages of ticks.
Resumo:
The cattle tick, Boophilus microplus, is a major pest of cattle in Australia, Central and South America, and parts of Africa and Asia. Control of ticks with organophosphates (OPs) and carbamates, which target acetylcholinesterases (AChE), led to evolution of resistance to these pesticides. Alleles at the locus studied here, AChE2, from OP-susceptible female ticks from Australia and Mexico differed at 46 of 1689 nucleotide positions (20 putative amino acid differences) whereas alleles from three strains of OP-resistant ticks from Australia differed with the allele from the Australian susceptible ticks at six to 13 nucleotide positions (three to six putative amino acid differences). However, the role, if any, of these polymorphisms in the OP-resistance phenotype is unknown. Certainly none of the polymorphisms correspond to sites in ACK that are involved in catalysis or binding of acetylcholine in other organisms. Both of the AChE loci of B. microplus, AChE1 and AChE2, are apparently expressed in synganglia; AChE1 is also expressed in salivary glands and ovaries, in OP-susceptible and OP-resistant ticks. This seems to contradict studies of enzyme kinetics, which indicated that only one form of AChE was present in the synganglia, the site of the action of OPs, in this species of tick. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (H2O)-H-1 and (H2O)-H-2 revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(v)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307,63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E-o = +315 mV, pH 8).
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.
Resumo:
A repetitive DNA motif was used as a marker to identify novel genes in the mucosal pathogen Moraxella catarrhalis. There is a high prevalence of such repetitive motifs in virulence genes that display phase variable expression. Two repeat containing loci were identified using a digoxigenin-labelled 5'-(CAAC)(6)-3' oligonucleotide probe. The repeats are located in the methylase components of two distinct type III restriction-modification (R-M) systems. We suggest that the phase variable nature of these R-M systems indicates that they have an important role in the biology of M. catarrhalis. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies.
Resumo:
Rapid accumulation of few polyhedra (FP) mutants was detected during serial passaging of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) in cell culture. 100% FP infected cells were observed by passage 6. The specific yield decreased from 178 polyhedra per cell at passage 2 to two polyhedra per cell at passage 6. The polyhedra at passage 6 were not biologically active, with a 28-fold reduction in potency compared to passage 3. Electron microscopy studies revealed that very few polyhedra were produced in an FP infected cell (< 10 polyhedra per section) and in most cases these polyhedra contained no virions. A specific failure in the intranuclear nucleocapsid envelopment process in the FP infected cells, leading to the accumulation of naked nucleocapsids, was observed. Genomic restriction endonuclease digestion profiles of budded virus DNA from all passages did not indicate any large DNA insertions or deletions that are often associated with such FP phenotypes for the extensively studied Autographa californica nucleopolyhedrovirus and Gaileria mellonella nucleopolyhedrovirus. Within an HaSNPV 25K FP gene homologue, a single base-pair insertion (an adenine residue) within a region of repetitive sequences (seven adenine residues) was identified in one plaque-purified HaSNPV FP mutant. Furthermore, the sequences obtained from individual clones of the 25KFP gene PCR products of a late passage revealed point mutations or single base-pair insertions occurring throughout the gene. The mechanism of FP mutation in HaSNPV is likely similar to that seen for Lymantria dispar nucleopolyhedrovirus, involving point mutations or small insertions/deletions of the 25K FP gene.
Resumo:
The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.
Resumo:
Sequence variation in the internal transcribed spacer (ITS-1) ribosomal DNA subunit was examined for sorghum midge obtained from introduced and native hosts in south-eastern and central Queensland. No variation was observed relative to host plant or geographical distance for midges collected from two introduced hosts, grain sorghum (Sorghum bicolor ) and Johnson grass (S. halepense ); however, sequence differences were observed between midges from introduced and native hosts and among midges from a single native host, slender bluegrass (Dichanthium affine ). No evidence was observed of introduced midges on native hosts, or vice versa. These results agree with previously hypothesised host distributions for native and introduced midges in Australia, and expand the sample of introduced hosts to include Johnson grass. They suggest that Stenodiplosis sorghicola , the principal midge infesting grain sorghum, is also the most common species on Johnson grass. This confirms that Johnson grass plays a role in the population dynamics of S. sorghicola and suggests that midges originating from Johnson grass may influence levels of infestation in grain sorghum.
Resumo:
Nedd4 belongs to a family of ubiquitin-protein ligases that is characterized by 2-4 WW domains, a carboxyl-terminal Hect ((h) under bar omologous to (E) under bar6-AP (C) under bar arboxyl (t) under bar erminus)-domain and in most cases an amino-terminal C2 domain. We had previously identified a series of proteins that associates with the WW domains of Nedd4. In this paper, we demonstrate that one of the Nedd4-binding proteins, N4WBP5, belongs to a small group of evolutionarily conserved proteins with three transmembrane domains. N4WBP5 binds Nedd4 WW domains via the two PPXY motifs present in the amino terminus of the protein. In addition to Nedd4, N4WBP5 can interact with the WW domains of a number of Nedd4 family members and is ubiquitinated. Endogenous N4WBP5 localizes to the Golgi complex. Ectopic expression of the protein disrupts the structure of the Golgi, suggesting that N4WBP5 forms part of a family of integral Golgi membrane proteins. Based on previous observations in yeast, we propose that N4WBP5 may act as an adaptor for Nedd4-like proteins and their putative targets to control ubiquitin-dependent protein sorting and trafficking.