988 resultados para Dirichlet, Distribució de
Resumo:
Material didàctic del grup d'investigació Observatori sobre la Didàctica de les Arts (ODAS)
Resumo:
Material didàctica del grup d'investigació Observatori sobre la Didàctica de les Arts (ODAS)
Resumo:
Material didàctic del grup d'investigació Observatori sobre la Didàctica de les Arts (ODAS)
Resumo:
Material didàctic del grup d'investigació Observatori sobre la Didàctica de les Arts (ODAS)
Resumo:
Material didàctic del grup d'investigació Observatori sobre la Didàctica de les Arts (ODAS)
Resumo:
Material didàctic del grup d'investigació Observatori sobre la Didàctica de les Arts (ODAS)
Resumo:
Material didàctic del grup d'investigació Observatori sobre la Didàctica de les Arts (ODAS)
Resumo:
Material didàctic del grup d'investigació Observatori sobre la Didàctica de les Arts (ODAS)
Resumo:
The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
Es ist bekannt, dass die Dichte eines gelösten Stoffes die Richtung und die Stärke seiner Bewegung im Untergrund entscheidend bestimmen kann. Eine Vielzahl von Untersuchungen hat gezeigt, dass die Verteilung der Durchlässigkeiten eines porösen Mediums diese Dichteffekte verstärken oder abmindern kann. Wie sich dieser gekoppelte Effekt auf die Vermischung zweier Fluide auswirkt, wurde in dieser Arbeit untersucht und dabei das experimentelle sowohl mit dem numerischen als auch mit dem analytischen Modell gekoppelt. Die auf der Störungstheorie basierende stochastische Theorie der macrodispersion wurde in dieser Arbeit für den Fall der transversalen Makodispersion. Für den Fall einer stabilen Schichtung wurde in einem Modelltank (10m x 1.2m x 0.1m) der Universität Kassel eine Serie sorgfältig kontrollierter zweidimensionaler Experimente an einem stochastisch heterogenen Modellaquifer durchgeführt. Es wurden Versuchsreihen mit variierenden Konzentrationsdifferenzen (250 ppm bis 100 000 ppm) und Strömungsgeschwindigkeiten (u = 1 m/ d bis 8 m/d) an drei verschieden anisotrop gepackten porösen Medien mit variierender Varianzen und Korrelationen der lognormal verteilten Permeabilitäten durchgeführt. Die stationäre räumliche Konzentrationsausbreitung der sich ausbreitenden Salzwasserfahne wurde anhand der Leitfähigkeit gemessen und aus der Höhendifferenz des 84- und 16-prozentigen relativen Konzentrationsdurchgang die Dispersion berechnet. Parallel dazu wurde ein numerisches Modell mit dem dichteabhängigen Finite-Elemente-Strömungs- und Transport-Programm SUTRA aufgestellt. Mit dem kalibrierten numerischen Modell wurden Prognosen für mögliche Transportszenarien, Sensitivitätsanalysen und stochastische Simulationen nach der Monte-Carlo-Methode durchgeführt. Die Einstellung der Strömungsgeschwindigkeit erfolgte - sowohl im experimentellen als auch im numerischen Modell - über konstante Druckränder an den Ein- und Auslauftanks. Dabei zeigte sich eine starke Sensitivität der räumlichen Konzentrationsausbreitung hinsichtlich lokaler Druckvariationen. Die Untersuchungen ergaben, dass sich die Konzentrationsfahne mit steigendem Abstand von der Einströmkante wellenförmig einem effektiven Wert annähert, aus dem die Makrodispersivität ermittelt werden kann. Dabei zeigten sich sichtbare nichtergodische Effekte, d.h. starke Abweichungen in den zweiten räumlichen Momenten der Konzentrationsverteilung der deterministischen Experimente von den Erwartungswerten aus der stochastischen Theorie. Die transversale Makrodispersivität stieg proportional zur Varianz und Korrelation der lognormalen Permeabilitätsverteilung und umgekehrt proportional zur Strömungsgeschwindigkeit und Dichtedifferenz zweier Fluide. Aus dem von Welty et al. [2003] mittels Störungstheorie entwickelten dichteabhängigen Makrodispersionstensor konnte in dieser Arbeit die stochastische Formel für die transversale Makrodispersion weiter entwickelt und - sowohl experimentell als auch numerisch - verifiziert werden.
Resumo:
Das von Maz'ya eingeführte Approximationsverfahren, die Methode der näherungsweisen Näherungen (Approximate Approximations), kann auch zur numerischen Lösung von Randintegralgleichungen verwendet werden (Randpunktmethode). In diesem Fall hängen die Komponenten der Matrix des resultierenden Gleichungssystems zur Berechnung der Näherung für die Dichte nur von der Position der Randpunkte und der Richtung der äußeren Einheitsnormalen in diesen Punkten ab. Dieses numerisches Verfahren wird am Beispiel des Dirichlet Problems für die Laplace Gleichung und die Stokes Gleichungen in einem beschränkten zweidimensionalem Gebiet untersucht. Die Randpunktmethode umfasst drei Schritte: Im ersten Schritt wird die unbekannte Dichte durch eine Linearkombination von radialen, exponentiell abklingenden Basisfunktionen approximiert. Im zweiten Schritt wird die Integration über den Rand durch die Integration über die Tangenten in Randpunkten ersetzt. Für die auftretende Näherungspotentiale können sogar analytische Ausdrücke gewonnen werden. Im dritten Schritt wird das lineare Gleichungssystem gelöst, und eine Näherung für die unbekannte Dichte und damit auch für die Lösung der Randwertaufgabe konstruiert. Die Konvergenz dieses Verfahrens wird für glatte konvexe Gebiete nachgewiesen.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
In dieser Arbeit werden nichtüberlappende Gebietszerlegungsmethoden einerseits hinsichtlich der zu lösenden Problemklassen verallgemeinert und andererseits in bisher nicht untersuchten Kontexten betrachtet. Dabei stehen funktionalanalytische Untersuchungen zur Wohldefiniertheit, eindeutigen Lösbarkeit und Konvergenz im Vordergrund. Im ersten Teil werden lineare elliptische Dirichlet-Randwertprobleme behandelt, wobei neben Problemen mit dominantem Hauptteil auch solche mit singulärer Störung desselben, wie konvektions- oder reaktionsdominante Probleme zugelassen sind. Der zweite Teil befasst sich mit (gleichmäßig) monotonen koerziven quasilinearen elliptischen Dirichlet-Randwertproblemen. In beiden Fällen wird das Lipschitz-Gebiet in endlich viele Lipschitz-Teilgebiete zerlegt, wobei insbesondere Kreuzungspunkte und Teilgebiete ohne Außenrand zugelassen sind. Anschließend werden Transmissionsprobleme mit frei wählbaren $L^{\infty}$-Parameterfunktionen hergeleitet, wobei die Konormalenableitungen als Funktionale auf geeigneten Funktionenräumen über den Teilrändern ($H_{00}^{1/2}(\Gamma)$) interpretiert werden. Die iterative Lösung dieser Transmissionsprobleme mit einem Ansatz von Deng führt auf eine Substrukturierungsmethode mit Robin-artigen Transmissionsbedingungen, bei der eine Auswertung der Konormalenableitungen aufgrund einer geschickten Aufdatierung der Robin-Daten nicht notwendig ist (insbesondere ist die bekannte Robin-Robin-Methode von Lions als Spezialfall enthalten). Die Konvergenz bezüglich einer partitionierten $H^1$-Norm wird für beide Problemklassen gezeigt. Dabei werden keine über $H^1$ hinausgehende Regularitätsforderungen an die Lösungen gestellt und die Gebiete müssen keine zusätzlichen Glattheitsvoraussetzungen erfüllen. Im letzten Kapitel werden nichtmonotone koerzive quasilineare Probleme untersucht, wobei das Zugrunde liegende Gebiet nur in zwei Lipschitz-Teilgebiete zerlegt sein soll. Das zugehörige nichtlineare Transmissionsproblem wird durch Kirchhoff-Transformation in lineare Teilprobleme mit nichtlinearen Kopplungsbedingungen überführt. Ein optimierungsbasierter Lösungsansatz, welcher einen geeigneten Abstand der rücktransformierten Dirichlet-Daten der linearen Teilprobleme auf den Teilrändern minimiert, führt auf ein optimales Kontrollproblem. Die dabei entstehenden regularisierten freien Minimierungsprobleme werden mit Hilfe eines Gradientenverfahrens unter minimalen Glattheitsforderungen an die Nichtlinearitäten gelöst. Unter zusätzlichen Glattheitsvoraussetzungen an die Nichtlinearitäten und weiteren technischen Voraussetzungen an die Lösung des quasilinearen Ausgangsproblems, kann zudem die quadratische Konvergenz des Newton-Verfahrens gesichert werden.
Resumo:
Se presenta experiencia educativa que propone educar en salud como eje transversal creando unos h??bitos saludables entre el alumnado de educaci??n infantil. Se realiza en el CPR Taxara en Venta Nueva, Granada. Los objetivos son: conocer qu?? es la obesidad infantil y su riesgo para la salud; conocer la relevancia del tema debido al aumento progresivo de la obesidad infantil; sensibilizar a la sociedad en general, y sobre todo al entorno escolar, de la importancia que los educadores tenemos en este campo; crear un entorno escolar y familiar que favorezca una alimentaci??n equilibrada y la pr??ctica frecuente de actividad f??sica; practicar h??bitos saludables para una dieta saludable y conocer los beneficios de una dieta saludable; mejorar la distribuci??n de la ingesta alimentaria a lo largo del d??a para reducir el porcentaje de escolares que prescinde del desayuno o de alguna otra comida; disminuir la ingesta de grasas no saludables y az??cares, aumentar el consumo diario de frutas, verduras y agua; promover la pr??ctica habitual de ejercicio f??sico y reducir el tiempo dedicado a la televisi??n, videojuegos y ordenadores; valorar una revisi??n m??dica para prevenir posibles enfermedades.