1000 resultados para Direct theorem
Resumo:
We first reported that polyvinylpyrrolidone-protected graphene was dispersed well in water and had good electrochemical reduction toward O-2 and H2O2. With glucose oxidase (GOD) as an enzyme model, we constructed a novel polyvinylpyrrolidone-proteeted graphene/polyethylenimine-ftmctionalized ionic liquid/GOD electrochemical biosensor, which achieved the direct electron transfer of GOD, maintained its bioactivity and showed potential application for the fabrication of novel glucose biosensors with linear glucose response up to 14 mM.
Resumo:
As inorganic proton conductors. phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes.
Resumo:
We have synthesized a porous co-polyimide film by coagulating a polyimide precursor in the non-solvent and thermal imidization. Factors affecting the morphology, pore size, porosity, and mechanical strength of the film were discussed. The porous polyimide matrix consists of a porous top layer and a spongy sub-structure with micropores. It is used as a porous matrix to construct sulfonated poly(styrene-ran-ethylene) (SPSE) infiltrated composite membrane for direct methanol fuel cell (DMFC) application. Due to the complete inertness to methanol and the very high mechanical strength of the polyimide matrix, the swelling of the composite membrane is greatly suppressed and the methanol crossover is also significantly reduced, while high proton conductivity is still maintained. Because of its higher proton conductivity and less methanol permeability, single fuel cell performance test demonstrated that this composite membrane outperformed Nafion membrane.
Resumo:
Electrochemical measurement of respiratory chain activity is a rapid and reliable screening for the toxicity on microorganisms. Here, we investigated in-vitro effects of toxin on Escherichia coli (E. coli) that was taken as a model microorganism incubated with ferricyanide. The current signal of ferrocyanide effectively amplified by ultramicroelectrode array (UMEA), which was proven to be directly related to the toxicity. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. The electrochemical responses to 3,5-dichlorophenol (DCP) under the incubation times revealed that the toxicity reached a stable level at 60 min, and its 50% inhibiting concentration (IC50) was estimated to be 8.0 mg L-1. At 60 min incubation, the IC50 values for KCN and As2O3 in water samples were 4.9 mg L-1 and 18.3 mg L-1, respectively. But the heavy metal ions, such as Cu2+ Pb2+ and Ni2+, showed no obvious toxicity on E. coli.
Resumo:
In this work, we studied the reaction between Au nanoparticles (Au NPs) and [Fe(CN)(6)](3-) by the UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The absorption peak of Au NPs disappeared after adding [Fe(CN)(6)](3-) and the XPS data conformed the formation of [Au(CN)(2)](-). The results demonstrated that [Fe(CN)(6)](3-) could induce the dissolution of Au NPs, where the CN- from the dissociation of [Fe(CN)(6)](3-) played an important role.
Resumo:
Ordered N-methylimidazolium functionalized mesoporous silica (SBA-15) anion exchangers were directly synthesized by co-condensation of tetraethoxysilane with 1-methyl-3(triethoxysilylpropyl)imidazolium chloride. The prepared samples with rod-like morphology showed high surface areas (> 400 m(2) g(-1)), well-ordered pores (> 58 angstrom), and excellent thermal stability up to 387 degrees C. The adsorption behaviors of Cr(VI) from aqueous solution on the anion exchangers were studied using the batch method. The anion exchangers had high adsorption capacity ranging from 50.8 to 90.5 mg g(-1), over a wider pH range (1-8) than amino functionalized mesoporous silica. The adsorption rate was fast, and the maximum adsorption was obtained at pH 4.6. The adsorption data for the anion exchangers were consistent with the Langmuir isotherm equation. Most active sites of the anion exchangers were easily accessible. The mixed solution of 0.1 mol L-1 NH3 center dot H2O and 0.5 mol L-1 NH4Cl was effective desorption solution, and 95% of Cr(VI) could be desorbed.
Resumo:
In this communication, biosynthesis of gold nanoparticles assisted by Escherichia coli DH5 alpha and its application on direct electrochemistry of hemoglobin are reported. The gold nanoparticles formed on the bacteria surface are mostly spherical. The direct electrochemistry of hemoglobin can be achieved by incorporated into the bio-nanocomposite films on a glassy carbon electrode.
Resumo:
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.
Resumo:
The composite film based on Nafion and hydrophobic room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim] PF6) was explored. Here, Nafion was used as a binder to form Nafion-ionic liquids composite film and help [bmim] PF6 effectively adhered on glassy carbon (GC) electrode. X-ray photoelectron spectroscopy (XPS), cyclic voltammtery (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize this composite film, showing that the composite film can effectively adhere on the GC electrode surface through Nafion interacting with [bmim] PF6 and GC electrode. Meanwhile, doping [bmim] PF6 in Nafion can also effectively reduce the electron transfer resistance of Nafion. The composite film can be readily used as an immobilization matrix to entrap horseradish peroxidase (HRP). A pair of well-defined redox peaks of HRP was obtained at the HRP/Nafion[bmim] PF6 composite film-modified GC electrode through direct electron transfer between the protein and the underlying electrode. HRP can still retain its biological activity and enhance electrochemical reduction towards O-2 and H2O2. It is expected that this composite film may find more potential applications in biosensors and biocatalysis.
Resumo:
Polyelectrolyte complexes (PECs) of chitosan and phosphotungstic acid have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Phosphotungstic acid can be fixed within PECs membranes through strong electrostatic interactions, which avoids the decrease of conductivity caused by the dissolving of phosphotungstic acid as previously reported. Scanning electron microscopy (SEM) shows that the PECs membranes are homogeneous and dense. Fourier transform infrared spectroscopy (FTIR) demonstrates that hydrogen bonding is formed between chitosan and phosphotungstic acid. Thermogravimetric analysis (TGA) shows that the PECs membranes have good thermal stability up to 210 degrees C. The PECs membranes exhibit good swelling properties and low methanol permeability (P, 3.3 x 10(-7) cm(2) s(-1)). Proton conductivity (sigma) of the PECs membranes increases at elevated temperature, reaching the value of 0.024 S cm(-1) at 80 degrees C.
Resumo:
Surface-modified Nafion (R) membrane was prepared by casting proton-conducting polyelectrolyte complexes on the surface of Nafion (R). The casting layer is homogeneous and its thickness is about 900 nm. The proton conductivity of modified Nafion (R) is slightly lower than that of plain Nafion (R); however, its methanol permeability is 41% lower than that of plain Nafion (R). The single cells with modified Nafion (R) exhibit higher open circuit voltage (OCV = 0.73 V) and maximal power density (P-max = 58 mW cm(-2)) than the single cells with plain Nafion (R) (OCV = 0.67 V, P x = 49 mW cm-2). It is a simple, efficient, cost-effective approach to modifying Nafion (R) by casting proton-conducting materials on the surface of Nafion (R).