976 resultados para Digital Manufacturing
Resumo:
This paper presents the detailed dynamic digital simulation for the study of phenomenon of torsional interaction between HVDC-Turbine generator shaft, dynamics using the novel converter model presented in [ 1 ] The system model includes detailed representation of the synchronous generator and the shaft dynamics, the ac and dc network transients. The results of a case study indicate the various factors that influence the torsional interaction.
Resumo:
This paper describes the cost-benefit analysis of digital long-term preservation (LTP) that was carried out in the context of the Finnish National Digital Library Project (NDL) in 2010. The analysis was based on the assumption that as many as 200 archives, libraries, and museums will share an LTP system. The term ‘system’ shall be understood as encompassing not only information technology, but also human resources, organizational structures, policies and funding mechanisms. The cost analysis shows that an LTP system will incur, over the first 12 years, cumulative costs of €42 million, i.e. an average of €3.5 million per annum. Human resources and investments in information technology are the major cost factors. After the initial stages, the analysis predicts annual costs of circa €4 million. The analysis compared scenarios with and without a shared LTP system. The results indicate that a shared system will have remarkable benefits. At the development and implementation stages, a shared system shows an advantage of €30 million against the alternative scenario consisting of five independent LTP solutions. During the later stages, the advantage is estimated at €10 million per annum. The cumulative cost benefit over the first 12 years would amount to circa €100 million.
Resumo:
The loss and degradation of forest cover is currently a globally recognised problem. The fragmentation of forests is further affecting the biodiversity and well-being of the ecosystems also in Kenya. This study focuses on two indigenous tropical montane forests in the Taita Hills in southeastern Kenya. The study is a part of the TAITA-project within the Department of Geography in the University of Helsinki. The study forests, Ngangao and Chawia, are studied by remote sensing and GIS methods. The main data includes black and white aerial photography from 1955 and true colour digital camera data from 2004. This data is used to produce aerial mosaics from the study areas. The land cover of these study areas is studied by visual interpretation, pixel-based supervised classification and object-oriented supervised classification. The change of the forest cover is studied with GIS methods using the visual interpretations from 1955 and 2004. Furthermore, the present state of the study forests is assessed with leaf area index and canopy closure parameters retrieved from hemispherical photographs as well as with additional, previously collected forest health monitoring data. The canopy parameters are also compared with textural parameters from digital aerial mosaics. This study concludes that the classification of forest areas by using true colour data is not an easy task although the digital aerial mosaics are proved to be very accurate. The best classifications are still achieved with visual interpretation methods as the accuracies of the pixel-based and object-oriented supervised classification methods are not satisfying. According to the change detection of the land cover in the study areas, the area of indigenous woodland in both forests has decreased in 1955 2004. However in Ngangao, the overall woodland area has grown mainly because of plantations of exotic species. In general, the land cover of both study areas is more fragmented in 2004 than in 1955. Although the forest area has decreased, forests seem to have a more optimistic future than before. This is due to the increasing appreciation of the forest areas.
Resumo:
The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.
Resumo:
In this paper we address a scheduling problem for minimising total weighted tardiness. The motivation for the paper comes from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real life scenarios like unequal release times, incompatible job families, non-identical job sizes and allowance for job splitting have been considered. A mathematical model taking into account dynamic starting conditions has been developed. Due to the NP-hard nature of the problem, a few heuristic algorithms have been proposed. The performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small size problem instances, and (b) in comparison with `estimated optimal solution' for large size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal solutions (that is, statistically estimated one) in very reasonable computational time.
Resumo:
A computerized non-linear-least-squares regression procedure to analyse the galvanostatic current-potential data for kinetically hindered reactions on porous gas-diffusion electrodes is reported. The simulated data fit well with the corresponding measured values. The analytical estimates of electrode-kinetic parameters and uncompensated resistance are found to be in good agreement with their respective values obtained from Tafel plots and the current-interrupter method. The procedure circumvents the need to collect the data in the limiting-current region where the polarization values are usually prone to errors. The polarization data for two typical cases, namely, methanol oxidation on a carbon-supported platinum-tin electrode and oxygen reduction on a Nafion-coated platinized carbon electrode, are successfully analysed.
Resumo:
Recently, Brownian networks have emerged as an effective stochastic model to approximate multiclass queueing networks with dynamic scheduling capability, under conditions of balanced heavy loading. This paper is a tutorial introduction to dynamic scheduling in manufacturing systems using Brownian networks. The article starts with motivational examples. It then provides a review of relevant weak convergence concepts, followed by a description of the limiting behaviour of queueing systems under heavy traffic. The Brownian approximation procedure is discussed in detail and generic case studies are provided to illustrate the procedure and demonstrate its effectiveness. This paper places emphasis only on the results and aspires to provide the reader with an up-to-date understanding of dynamic scheduling based on Brownian approximations.
Resumo:
We present a framework for performance evaluation of manufacturing systems subject to failure and repair. In particular, we determine the mean and variance of accumulated production over a specified time frame and show the usefulness of these results in system design and in evaluating operational policies for manufacturing systems. We extend this analysis for lead time as well. A detailed performability study is carried out for the generic model of a manufacturing system with centralized material handling. Several numerical results are presented, and the relevance of performability analysis in resolving system design issues is highlighted. Specific problems addressed include computing the distribution of total production over a shift period, determining the shift length necessary to deliver a given production target with a desired probability, and obtaining the distribution of Manufacturing Lead Time, all in the face of potential subsystem failures.
Resumo:
Mathematical modelling plays a vital role in the design, planning and operation of flexible manufacturing systems (FMSs). In this paper, attention is focused on stochastic modelling of FMSs using Markov chains, queueing networks, and stochastic Petri nets. We bring out the role of these modelling tools in FMS performance evaluation through several illustrative examples and provide a critical comparative evaluation. We also include a discussion on the modelling of deadlocks which constitute an important source of performance degradation in fully automated FMSs.
Resumo:
A structured systems methodology was developed to analyse the problems of production interruptions occurring at random intervals in continuous process type manufacturing systems. At a macro level the methodology focuses on identifying suitable investment policies to reduce interruptions of a total manufacturing system that is a combination of several process plants. An interruption-tree-based simulation model was developed for macroanalysis. At a micro level the methodology focuses on finding the effects of alternative configurations of individual process plants on the overall system performance. A Markov simulation model was developed for microlevel analysis. The methodology was tested with an industry-specific application.
Resumo:
One of the main disturbances in EEG signals is EMG artefacts generated by muscle movements. In the paper, the use of a linear phase FIR digital low-pass filter with finite wordlength precision coefficients is proposed, designed using the compensation procedure, to minimise EMG artefacts in contaminated EEG signals. To make the filtering more effective, different structures are used, i.e. cascading, twicing and sharpening (apart from simple low-pass filtering) of the designed FIR filter Modifications are proposed to twicing and sharpening structures to regain the linear phase characteristics that are lost in conventional twicing and sharpening operations. The efficacy of all these transformed filters in minimising EMG artefacts is studied, using SNR improvements as a performance measure for simulated signals. Time plots of the signals are also compared. Studies show that the modified sharpening structure is superior in performance to all other proposed methods. These algorithms have also been applied to real or recorded EMG-contaminated EEG signal. Comparison of time plots, and also the output SNR, show that the proposed modified sharpened structure works better in minimising EMG artefacts compared with other methods considered.
Resumo:
We present through the use of Petri Nets, modeling techniques for digital systems realizable using FPGAs. These Petri Net models are used for logic validation at the logic design phase. The technique is illustrated by modeling practical circuits. Further, the utility of the technique with respect to timing analysis of the modeled digital systems is considered. Copyright (C) 1997 Elsevier Science Ltd
Resumo:
We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave intensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise. A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear. We also establish a connection between the reconstruction technique and homomorphic signal processing, which enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the magnitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as experimental data to validate the accuracy of the reconstruction technique. (C) 2011 Optical Society of America
Resumo:
The next generation manufacturing technologies will draw on new developments in geometric modelling. Based on a comprehensive analysis of the desiderata of next generation geometric modellers, we present a critical review of the major modelling paradigms, namely, CSG, B-Rep, non-manifold, and voxel models. We present arguments to support the view that voxel-based modellers have attributes that make it the representation scheme of choice in meeting the emerging requirements of geometric modelling.