891 resultados para Design methods
Resumo:
This paper reports the design and numerical analysis of a three-dimensional biochip plasma blood separator using computational fluid dynamics techniques. Based on the initial configuration of a two-dimensional (2D) separator, five three-dimensional (3D) microchannel biochip designs are categorically developed through axial and plenary symmetrical expansions. These include the geometric variations of three types of the branch side channels (circular, rectangular, disc) and two types of the main channel (solid and concentric). Ignoring the initial transient behaviour and assuming that steady-state flow has been established, the behaviour of the blood fluid in the devices is algebraically analysed and numerically modelled. The roles of the relevant microchannel mechanisms, i.e. bifurcation, constriction and bending channel, on promoting the separation process are analysed based on modelling results. The differences among the different 3D implementations are compared and discussed. The advantages of 3D over 2D separator in increasing separation volume and effectively depleting cell-free layer fluid from the whole cross section circumference are addressed and illustrated. © 2011 John Wiley & Sons, Ltd.
Resumo:
This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the preliminary design stage. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper considers how blade loading should be measured, compares the performance of various loss correlations, and explores the impact of blade lift on performance and lapse rates. To these ends, an analytical design study is presented for a repeating-stage, axial-flow LP turbine. It is demonstrated that the long-established Zweifel lift coefficient (Zweifel, 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection" Brown Boveri Rev., 32(1), pp. 436-444) is flawed because it does not account for the blade camber. As a result the Zweifel coefficient is only meaningful for a fixed set of flow angles and cannot be used as an absolute measure of blade loading. A lift coefficient based on circulation is instead proposed that accounts for the blade curvature and is independent of the flow angles. Various existing profile and secondary loss correlations are examined for their suitability to preliminary design. A largely qualitative comparison demonstrates that the loss correlations based on Ainley and Mathieson (Ainley and Mathieson, 1957, "A Method of Performance Estimation for Axial-Flow Turbines," ARC Reports and Memoranda No. 2974; Dunham and Came, 1970, "Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction," Trans. ASME: J. Eng. Gas Turbines Power, July, pp. 252-256; Kacker and Okapuu, 1982, "A Mean Line Performance Method for Axial Flow Turbine Efficiency," J. Eng. Power, 104, pp. 111-119). are not realistic, while the profile loss model of Coull and Hodson (Coull and Hodson, 2011, "Predicting the Profile Loss of High-Lift Low Pressure Turbines," J. Turbomach., 134(2), pp. 021002) and the secondary loss model of (Traupel, W, 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin) are arguably the most reasonable. A quantitative comparison with multistage rig data indicates that, together, these methods over-predict lapse rates by around 30%, highlighting the need for improved loss models and a better understanding of the multistage environment. By examining the influence of blade lift across the Smith efficiency chart, the analysis demonstrates that designs with higher flow turning will tend to be less sensitive to increases in blade loading. © 2013 American Society of Mechanical Engineers.
Resumo:
Building on recent developments in mixed methods, we discuss the methodological implications of critical realism and explore how these can guide dynamic mixed-methods research design in information systems. Specifically, we examine the core ontological assumptions of CR in order to gain some perspective on key epistemological issues such as causation and validity, and illustrate how these shape our logic of inference in the research process through what is known as retroduction. We demonstrate the value of a CR-led mixed-methods research approach by drawing on a study that examines the impact of ICT adoption in the financial services sector. In doing so, we provide insight into the interplay between qualitative and quantitative methods and the particular value of applying mixed methods guided by CR methodological principles. Our positioning of demi-regularities within the process of retroduction contributes a distinctive development in this regard. We argue that such a research design enables us to better address issues of validity and the development of more robust meta-inferences.
Resumo:
The adoption of inclusive design principles and methods in the design practice is meant to support the equity of use of everyday products by as many people as possible independently of their age, physical, sensorial and cognitive capabilities. Although the intention is highly valuable, inclusive design approaches have not been widely applied in industrial context. This paper analyses the findings of an empirical research conducted with industrial designers and product managers. The research indicates some of the hindrances to the adoption of inclusive design, such as the current way the market is considered and targeted, and; the way the designers are driven by the project's brief and budget to orient their research strategy and activities. The paper proposes a way to improve the current industrial mode by strategically supplying clients, designers or both together with information about inclusivity. © 2013 Taylor & Francis Group.
Resumo:
The adoption of inclusive design approach into design practice is compatible to the needs of an ageing society. However, tools and methods that promote inclusivity during new product development are scarcely used in industry. This paper is part of a research project that investigates ways to accommodate inclusive design into the design process in industrial context. The present paper is based on the finds from the observations and interviews with industrial designers and interviews with stakeholders. The outcomes from the study supported a better understanding of the client-designer dynamic as well as the stages in the design process where information related to inclusive design could be introduced. The findings were essential to inspire the development of an inclusive design interactive technique to be used by clients and designers. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Modern Engineering Design involves the deployment of many computational tools. Re- search on challenging real-world design problems is focused on developing improvements for the engineering design process through the integration and application of advanced com- putational search/optimization and analysis tools. Successful application of these methods generates vast quantities of data on potential optimum designs. To gain maximum value from the optimization process, designers need to visualise and interpret this information leading to better understanding of the complex and multimodal relations between param- eters, objectives and decision-making of multiple and strongly conflicting criteria. Initial work by the authors has identified that the Parallel Coordinates interactive visualisation method has considerable potential in this regard. This methodology involves significant levels of user-interaction, making the engineering designer central to the process, rather than the passive recipient of a deluge of pre-formatted information. In the present work we have applied and demonstrated this methodology in two differ- ent aerodynamic turbomachinery design cases; a detailed 3D shape design for compressor blades, and a preliminary mean-line design for the whole compressor core. The first case comprises 26 design parameters for the parameterisation of the blade geometry, and we analysed the data produced from a three-objective optimization study, thus describing a design space with 29 dimensions. The latter case comprises 45 design parameters and two objective functions, hence developing a design space with 47 dimensions. In both cases the dimensionality can be managed quite easily in Parallel Coordinates space, and most importantly, we are able to identify interesting and crucial aspects of the relationships between the design parameters and optimum level of the objective functions under con- sideration. These findings guide the human designer to find answers to questions that could not even be addressed before. In this way, understanding the design leads to more intelligent decision-making and design space exploration. © 2012 AIAA.
Resumo:
A novel smoke sensor was used to measure the smoke response to the fuel rack on a diesel engine. The conventional modelling methods used for engine control were investigated. The synchronization technique and Recursive Least Square method were applied to engine modelling and two models for controller design were derived.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - o realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 AIAA.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - ε realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 by the authors.
Resumo:
Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The concepts of reliability, robustness, adaptability, versatility, resilience and flexibility have been used to describe how a system design can mitigate the likely impact of uncertainties without removing their sources. With the increasing number of publications on designing systems to have such ilities, there is a need to clarify the relationships between the different ideas. This short article introduces a framework to compare these different ways in which a system can be insensitive to uncertainty, clarifying their meaning in the context of complex system design. We focus on relationships between the ilities listed above and do not discuss in detail methods to design-for-ilities. © 2013 The Author(s). Published by Taylor & Francis.
Resumo:
Ring rolling is an incremental bulk forming process for the near-net-shape production of seamless rings. This paper shows how nowadays the process design and optimization can be efficiently supported by simulation methods. For reliable predictions of the material flow and the microstructure evolution it's necessary to include a real ring rolling mill's control algorithm into the model. Furthermore an approach for the online measurement of the profile evolution during the process is presented by means of axial profiling in ring rolling. Hence the definition of new ring rolling strategies is possible even for advanced geometries.
Resumo:
BACKGROUND: Central Venous Catheterisation (CVC) has occasionally been associated with cases of retained guidewires in patients after surgery. In theory, this is a completely avoidable complication; however, as with any human procedure, operator error leading to guidewires being occasionally retained cannot be fully eliminated. OBJECTIVE: The work described here investigated the issue in an attempt to better understand it both from an operator and a systems perspective, and to ultimately recommend appropriate safe design solutions that reduce guidewire retention errors. METHODS: Nine distinct methods were used: observations of the procedure, a literature review, interviewing CVC end-users, task analysis construction, CVC procedural audits, two human reliability assessments, usability heuristics and a comprehensive solution survey with CVC end-users. RESULTS: The three solutions that operators rated most highly, in terms of both practicality and effectiveness, were: making trainees better aware of the potential guidewire complications and strongly emphasising guidewire removal in CVC training, actively checking that the guidewire is present in the waste tray for disposal, and standardising purchase of central line sets so that differences that may affect chances of guidewire loss is minimised. CONCLUSIONS: Further work to eliminate/engineer out the possibility of guidewires being retained is proposed.
Resumo:
New robotics is an approach to robotics that, in contrast to traditional robotics, employs ideas and principles from biology. While in the traditional approach there are generally accepted methods (e. g., from control theory), designing agents in the new robotics approach is still largely considered an art. In recent years, we have been developing a set of heuristics, or design principles, that on the one hand capture theoretical insights about intelligent (adaptive) behavior, and on the other provide guidance in actually designing and building systems. In this article we provide an overview of all the principles but focus on the principles of ecological balance, which concerns the relation between environment, morphology, materials, and control, and sensory-motor coordination, which concerns self-generated sensory stimulation as the agent interacts with the environment and which is a key to the development of high-level intelligence. As we argue, artificial evolution together with morphogenesis is not only "nice to have" but is in fact a necessary tool for designing embodied agents.