854 resultados para Design and manufacturing integration
Resumo:
M. Verdaguer
Resumo:
Cleverly designed molecular building blocks provide chemists with the tools of a powerful molecular-scale construction set. They enable them to engineer materials having a predictable order and useful solid-state properties. Hence, it is in the realm of supramolecular chemistry to follow a strategy for synthesizing materials which combine a selected set of properties, for instance from the areas of magnetism, photophysics and electronics. As a successful approach, host/guest solids which are based on extended anionic, homo- and bimetallic oxalato-bridged transition-metal compounds with two-and three-dimensional connectivities have been investigated. In this report, a brief review is given on the structural aspects of this class of compounds followed by a presentation of a thermal and magnetic study for two distinct, heterometallic oxalato-bridged layer compounds.
Resumo:
BACKGROUND Sutureless aortic valve replacement (SU-AVR) is an innovative approach which shortens cardiopulmonary bypass and cross-clamp durations and may facilitate minimally invasive approach. Evidence outlining its safety, efficacy, hemodynamic profile and potential complications is replete with small-volume observational studies and few comparative publications. METHODS Minimally invasive aortic valve surgery and high-volume SU-AVR replacement centers were contacted for recruitment into a global collaborative coalition dedicated to sutureless valve research. A Research Steering Committee was formulated to direct research and support the mission of providing registry evidence warranted for SU-AVR. RESULTS The International Valvular Surgery Study Group (IVSSG) was formed under the auspices of the Research Steering Committee, comprised of 36 expert valvular surgeons from 27 major centers across the globe. IVSSG Sutureless Projects currently proceeding include the Retrospective and Prospective Phases of the SU-AVR International Registry (SU-AVR-IR). CONCLUSIONS The global pooling of data by the IVSSG Sutureless Projects will provide required robust clinical evidence on the safety, efficacy and hemodynamic outcomes of SU-AVR.
Resumo:
Intraoperative laparoscopic calibration remains a challenging task. In this work we present a new method and instrumentation for intraoperative camera calibration. Contrary to conventional calibration methods, the proposed technique allows intraoperative laparoscope calibration from single perspective observations, resulting in a standardized scheme for calibrating in a clinical scenario. Results show an average displacement error of 0.52 ± 0.19 mm, indicating sufficient accuracy for clinical use. Additionally, the proposed method is validated clinically by performing a calibration during the surgery.
Resumo:
In our late twentieth century experience, survival of an economy seems critically dependent on well established rights to private property and a return to labor that rewards greater effort. But that need not be so. History provides examples of micro-socialist economies that internally, at least, allow for little private property for participants and a constant return to labor that is independent of effort. Some such economies may even be termed 'successful,' if success is taken to mean survival over several generations. If these communities survived without conditions that are generally thought to be necessary for success, a question worth asking is how this occurred, for we can then shed some light on what really is necessary for economic survival. Addressing this issue emphasizes the critical role of time, for even if the microsocialist economies that we study here eventually became the merest shadow of their former selves, the fact that they did flourish for so long makes them a valuable counterexample, and hence, a phenomenon in need of explanation. We consider here the dairy industry of the Shakers, which was characterized by intensive efforts to increase productivity, in part through the use of market signals, but efforts that were also limited by the ideological goals of the community. The Shakers were (and are, but since it is the historical Shakers that concern this paper, the past tense will be used) a Christian communal group. Some of their distinctive beliefs included the existence of a male and female Godhead, from which followed sexual equality, and active communication between Believers (a Shaker term for members of the sect) and denizens of the spirit world. Practices of the Society (their official name is the United Society of Believers in Christ's Second Appearing, the second appearing being in the body of their foundress, an illiterate Englishwoman named Ann Lee) included pacifism, celibacy, confession of sins to elders, and joint or communal ownership of the Society's assets. Each Shaker received the same return for his or her labor: room, board, clothing, and the experience of divine proximity in a community of like minded Believers (Stein 1992).
Resumo:
The usage of intensity modulated radiotherapy (IMRT) treatments necessitates a significant amount of patient-specific quality assurance (QA). This research has investigated the precision and accuracy of Kodak EDR2 film measurements for IMRT verifications, the use of comparisons between 2D dose calculations and measurements to improve treatment plan beam models, and the dosimetric impact of delivery errors. New measurement techniques and software were developed and used clinically at M. D. Anderson Cancer Center. The software implemented two new dose comparison parameters, the 2D normalized agreement test (NAT) and the scalar NAT index. A single-film calibration technique using multileaf collimator (MLC) delivery was developed. EDR2 film's optical density response was found to be sensitive to several factors: radiation time, length of time between exposure and processing, and phantom material. Precision of EDR2 film measurements was found to be better than 1%. For IMRT verification, EDR2 film measurements agreed with ion chamber results to 2%/2mm accuracy for single-beam fluence map verifications and to 5%/2mm for transverse plane measurements of complete plan dose distributions. The same system was used to quantitatively optimize the radiation field offset and MLC transmission beam modeling parameters for Varian MLCs. While scalar dose comparison metrics can work well for optimization purposes, the influence of external parameters on the dose discrepancies must be minimized. The ability of 2D verifications to detect delivery errors was tested with simulated data. The dosimetric characteristics of delivery errors were compared to patient-specific clinical IMRT verifications. For the clinical verifications, the NAT index and percent of pixels failing the gamma index were exponentially distributed and dependent upon the measurement phantom but not the treatment site. Delivery errors affecting all beams in the treatment plan were flagged by the NAT index, although delivery errors impacting only one beam could not be differentiated from routine clinical verification discrepancies. Clinical use of this system will flag outliers, allow physicists to examine their causes, and perhaps improve the level of agreement between radiation dose distribution measurements and calculations. The principles used to design and evaluate this system are extensible to future multidimensional dose measurements and comparisons. ^
Resumo:
In a large health care system, the importance of accurate information as feedback mechanisms about its performance is necessary on many levels from the senior level management to service level managers for valid decision-making purposes. The implementation of dashboards is one way to remedy the problem of data overload by providing up-to-date, accurate, and concise information. As this health care system seeks to have an organized, systematic review mechanism in place, dashboards are being created in a variety of the hospital service departments to monitor performance indicators. The Infection Control Administration of this health care system is one that does not currently utilize a dashboard but seeks to implement one. ^ The purpose of this project is to research and design a clinical dashboard for the Infection Control Administration. The intent is that the implementation and usefulness of the clinical dashboard translates into improvement in the measurement of health care quality.^
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.
Resumo:
This paper, investigates causal relationships among agriculture, manufacturing and export in Tanzania by using time series data for the period between 1970 and 2005. The empirical results show in both sectors there is Granger causality where agriculture causes both exports and manufacturing. Exports also cause both agricultural GDP and manufacturing GDP and any two variables out of three jointly cause the third one. There is also some evidence that manufacturing does not cause export and agriculture. Regarding cointegration, pairwise agricultural GDP and export are cointegrated, export and manufacture are cointegrated. Agriculture and manufacture are cointegrated but they are lag sensitive. However, three variables, manufacturing, export and agriculture both together are cointegrated showing that they share long run relation and this has important economic implications.
The Technology Gap and the Growth of the Firm: A Case Study of China's Mobile-phone Handset Industry
Resumo:
We have examined the way in which local Chinese firms confronted with a technology gap have achieved growth, using the Chinese handset industry as a case study. Chinese local firms have lacked technology, and have therefore turned to outside firms for development, design, and manufacturing, while they themselves have focused on sales and marketing, using their advantage of familiarity with the Chinese market. Consequently, by establishing a growth condition in which their selection of boundaries counterbalances the technology gap they have been able to expand their market share in comparison with foreign firms.