915 resultados para Design Driven Innovation
Resumo:
Routing is a very important step in VLSI physical design. A set of nets are routed under delay and resource constraints in multi-net global routing. In this paper a delay-driven congestion-aware global routing algorithm is developed, which is a heuristic based method to solve a multi-objective NP-hard optimization problem. The proposed delay-driven Steiner tree construction method is of O(n(2) log n) complexity, where n is the number of terminal points and it provides n-approximation solution of the critical time minimization problem for a certain class of grid graphs. The existing timing-driven method (Hu and Sapatnekar, 2002) has a complexity O(n(4)) and is implemented on nets with small number of sinks. Next we propose a FPTAS Gradient algorithm for minimizing the total overflow. This is a concurrent approach considering all the nets simultaneously contrary to the existing approaches of sequential rip-up and reroute. The algorithms are implemented on ISPD98 derived benchmarks and the drastic reduction of overflow is observed. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.
Resumo:
Online Social Networks (OSNs) facilitate to create and spread information easily and rapidly, influencing others to participate and propagandize. This work proposes a novel method of profiling Influential Blogger (IB) based on the activities performed on one's blog documents who influences various other bloggers in Social Blog Network (SBN). After constructing a social blogging site, a SBN is analyzed with appropriate parameters to get the Influential Blog Power (IBP) of each blogger in the network and demonstrate that profiling IB is adequate and accurate. The proposed Profiling Influential Blogger (PIB) Algorithm survival rate of IB is high and stable. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Resumo:
We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.
Resumo:
Aperture patterns play a vital role in coded aperture imaging ( CAI) applications. In recent years, many approaches were presented to design optimum or near-optimum aperture patterns. Uniformly redundant arrays (URAs) are, undoubtedly, the most successful for constant sidelobe of their periodic autocorrelation function. Unfortunately, the existing methods can only be used to design URAs with a limited number of array sizes and fixed autocorrelation sidelobe-to-peak ratios. In this paper, we present a novel method to design more flexible URAs. Our approach is based on a searching program driven by DIRECT, a global optimization algorithm. We transform the design question to a mathematical model, based on the DIRECT algorithm, which is advantageous for computer implementation. By changing determinative conditions, we obtain two kinds of types of URAs, including the filled URAs which can be constructed by existing methods and the sparse URAs which have never been mentioned by other authors as far as we know. Finally, we carry out an experiment to demonstrate the imaging performance of the sparse URAs.
Resumo:
In petawatt laser system, the gratings used to compose pulse compressor are very large in size which can be only acquired currently by arraying small aperture gratings to form a large one instead, an approach referred to as grating tiling. Theory and experiments have demonstrated that the coherent addition of multiple small gratings to form a larger grating is viable, the key technology of which is to control the relative position and orientation of each grating with high precision. According to the main factors that affect the performance of the grating tiling, a 5-DOF ultraprecision stage is developed for the grating tiling experiment. The mechanism is formed by serial structures. The motion of the mechanism is guided by flexure hinges and driven by piezoelectric actuators and the movement resolution of which can achieve nanometer level. To keep the stability of the mechanism, capacitive position sensors with nanometer accuracy are fixed on it to provide feedback signals with which to realize closed-loop control, thus the positioning precision of the mechanism is within several nanometers range through voltage control and digital PID algorithm. Results of experiments indicate that the performance of the mechanism can meet the requirement of precision for grating tiling.}
Resumo:
[EN] In today s economy, innovation is considered to be one of the main driving forces behind business competitiveness, if not the most relevant one. Traditionally, the study of innovation has been addressed from different perspectives. Recently, literature on knowledge management and intellectual capital has provided new insights. Considering this, the aim of this paper is to analyze the impact of different organizational conditions i.e. structural capital on innovation capability and innovation performance, from an intellectual capital (IC) perspective. As regards innovation capability, two dimensions are considered: new idea generation and innovation project management. The population subject to study is made up of technology-based Colombian firms. In order to gather information about the relevant variables involved in the research, a questionnaire was designed and addressed to the CEOs of the companies making up the target population. The sample analyzed is made up of 69 companies and is large enough to carry out a statistical study based on structural equation modelling (partial least squares approach) using PLS-Graph software (Chin and Frye, 2003). The results obtained show that structural capital explains to a great extent both the effectiveness of the new idea generation process and of innovation project management. However, the influence of each specific organizational component making up structural capital (organizational design, organizational culture, hiring and professional development policies, innovation strategy, technological capital, and external structure) varies. Moreover, successful innovation project management is the only innovation capability dimension that exerts a significant impact on company performance.
Resumo:
WorldFish is leading the CGIAR Research Program on Aquatic Agricultural Systems together with two other CGIAR Centers; the International Water Management Institute (IWMI) and Bioversity. In 2012 and 2013 the AAS Program rolled out in Solomon Islands, Zambia, Bangladesh, Cambodia and the Philippines. Aquatic Agricultural Systems are places where farming and fishing in freshwater and/or coastal ecosystems contribute significantly to household income and food security. The program goal is to improve the well-being of AAS-dependent people. A hub is a geographic location that provides a focus for learning, innovation and impact through participatory action research. In Solomon Islands AAS works in Malaita Hub (Malaita Province) and Western Hub (Western Province). In each hub we identify a ‘Development Challenge’ that the Program will address to give us focus and motivation.
Resumo:
Concern over the global energy system, whether driven by climate change, national security, or fears of shortage, is being discussed widely and in every arena but with a bias toward energy supply options. While demand reduction is often mentioned in passing, it is rarely a priority for implementation, whether through policy or through the search for innovation. This paper aims to draw attention to the opportunity for major reduction in energy demand, by presenting an analysis of how much of current global energy demand could be avoided. Previous work led to a "map" of global energy use that traces the flow of energy from primary sources (fuels or renewable sources), through fuel refinery, electricity generation, and end-use conversion devices, to passive systems and the delivery of final energy services (transport, illumination, and sustenance). The key passive systems are presented here and analyzed through simple engineering models with scalar equations using data based on current global practice. Physically credible options for change to key design parameters are identified and used to predict the energy savings possible for each system. The result demonstrates that 73% of global energy use could be saved by practically achievable design changes to passive systems. This reduction could be increased by further efficiency improvements in conversion devices. A list of the solutions required to achieve these savings is provided.