885 resultados para Deep sequencing
Resumo:
Tese de Doutoramento, Ciências do Mar, especialidade de Biologia Marinha, 18 de Dezembro de 2015, Universidade dos Açores.
Host-symbiont interactions in the deep-sea vent mussel Bathymodiolus azoricus : a molecular approach
Resumo:
Tese de Doutoramento, Ciências do Mar, especialidade de Biologia Marinha, 19 de Dezembro de 2015, Universidade dos Açores.
Resumo:
The problem addressed here originates in the industry of flat glass cutting and wood panel sawing, where smaller items are cut from larger items accordingly to predefined cutting patterns. In this type of industry the smaller pieces that are cut from the patterns are piled around the machine in stacks according to the size of the pieces, which are moved to the warehouse only when all items of the same size have been cut. If the cutting machine can process only one pattern at a time, and the workspace is limited, it is desirable to set the sequence in which the cutting patterns are processed in a way to minimize the maximum number of open stacks around the machine. This problem is known in literature as the minimization of open stacks (MOSP). To find the best sequence of the cutting patterns, we propose an integer programming model, based on interval graphs, that searches for an appropriate edge completion of the given graph of the problem, while defining a suitable coloring of its vertices.
Resumo:
This paper describes the TURTLE project that aim to develop sub-systems with the capability of deep-sea long-term presence. Our motivation is to produce new robotic ascend and descend energy efficient technologies to be incorporated in robotic vehicles used by civil and military stakeholders for underwater operations. TURTLE contribute to the sustainable presence and operations in the sea bottom. Long term presence on sea bottom, increased awareness and operation capabilities in underwater sea and in particular on benthic deeps can only be achieved through the use of advanced technologies, leading to automation of operation, reducing operational costs and increasing efficiency of human activity.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.
Resumo:
We have used massively parallel signature sequencing (MPSS) to sample the transcriptomes of 32 normal human tissues to an unprecedented depth, thus documenting the patterns of expression of almost 20,000 genes with high sensitivity and specificity. The data confirm the widely held belief that differences in gene expression between cell and tissue types are largely determined by transcripts derived from a limited number of tissue-specific genes, rather than by combinations of more promiscuously expressed genes. Expression of a little more than half of all known human genes seems to account for both the common requirements and the specific functions of the tissues sampled. A classification of tissues based on patterns of gene expression largely reproduces classifications based on anatomical and biochemical properties. The unbiased sampling of the human transcriptome achieved by MPSS supports the idea that most human genes have been mapped, if not functionally characterized. This data set should prove useful for the identification of tissue-specific genes, for the study of global changes induced by pathological conditions, and for the definition of a minimal set of genes necessary for basic cell maintenance. The data are available on the Web at http://mpss.licr.org and http://sgb.lynxgen.com.
Resumo:
The upper part of three deep seismic lines running across the Penninic Swiss Alps of Valais have been studied. Numerous reflectors illustrate the nappe structure of this internal part of the orogen. These reflectors, even at great depths (20-25 km), can be correlated with outcropping geological features and are most likely produced by lithological boundaries rather than by mylonites zones, which are hardly reflective in such an environment. Our interpretations, largely constrained by projections of the outcropping geology, have improved our knowledge of the deep structure of this segment of the Alpine belt, enhancing the importance of the backfolding and the crustal scale deformation phase which produced the Rawil-Valpelline depression and the Aar-Toce culmination. Furthermore we have here the possibility of correlating seismic patterns produced by ductile folds with the outcropping structures.
Resumo:
OBJECTIVE: Study of the uptake of new medical technologies provides useful information on the transfer of published evidence into usual practice. We conducted an audit of selected hospitals in three countries (Canada, France, and Switzerland) to identify clinical predictors of low-molecular-weight (LMW) heparin use and outpatient treatment, and to compare the pace of uptake of these new therapeutic approaches across hospitals. DESIGN: Historical review of medical records. SETTING AND PARTICIPANTS: We reviewed the medical records of 3043 patients diagnosed with deep vein thrombosis (DVT) in five Canadian, two French, and two Swiss teaching hospitals from 1994 to 1998. Measures. We explored independent clinical variables associated with LMW heparin use and outpatient treatment, and determined crude and adjusted rates of LMW heparin use and outpatient treatment across hospitals. RESULTS: For the years studied, the overall rates of LMW heparin use and outpatient treatment in the study sample were 34.1 and 15.8%, respectively, with higher rates of use in later years. Many comorbidities were negatively associated with outpatient treatment, and risk-adjusted rates of use of these new approaches varied significantly across hospitals. CONCLUSION: There has been a relatively rapid uptake of LMW heparins and outpatient treatment for DVT in their early years of availability, but the pace of uptake has varied considerably across hospitals and countries.
Resumo:
The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.
Resumo:
With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.
Resumo:
Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification.