819 resultados para Decision systems
Resumo:
The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.
Resumo:
The occurrence frequency of failure events serve as critical indexes representing the safety status of dam-reservoir systems. Although overtopping is the most common failure mode with significant consequences, this type of event, in most cases, has a small probability. Estimation of such rare event risks for dam-reservoir systems with crude Monte Carlo (CMC) simulation techniques requires a prohibitively large number of trials, where significant computational resources are required to reach the satisfied estimation results. Otherwise, estimation of the disturbances would not be accurate enough. In order to reduce the computation expenses and improve the risk estimation efficiency, an importance sampling (IS) based simulation approach is proposed in this dissertation to address the overtopping risks of dam-reservoir systems. Deliverables of this study mainly include the following five aspects: 1) the reservoir inflow hydrograph model; 2) the dam-reservoir system operation model; 3) the CMC simulation framework; 4) the IS-based Monte Carlo (ISMC) simulation framework; and 5) the overtopping risk estimation comparison of both CMC and ISMC simulation. In a broader sense, this study meets the following three expectations: 1) to address the natural stochastic characteristics of the dam-reservoir system, such as the reservoir inflow rate; 2) to build up the fundamental CMC and ISMC simulation frameworks of the dam-reservoir system in order to estimate the overtopping risks; and 3) to compare the simulation results and the computational performance in order to demonstrate the ISMC simulation advantages. The estimation results of overtopping probability could be used to guide the future dam safety investigations and studies, and to supplement the conventional analyses in decision making on the dam-reservoir system improvements. At the same time, the proposed methodology of ISMC simulation is reasonably robust and proved to improve the overtopping risk estimation. The more accurate estimation, the smaller variance, and the reduced CPU time, expand the application of Monte Carlo (MC) technique on evaluating rare event risks for infrastructures.
Resumo:
Over the last few years, more and more heuristic decision making techniques have been inspired by nature, e.g. evolutionary algorithms, ant colony optimisation and simulated annealing. More recently, a novel computational intelligence technique inspired by immunology has emerged, called Artificial Immune Systems (AIS). This immune system inspired technique has already been useful in solving some computational problems. In this keynote, we will very briefly describe the immune system metaphors that are relevant to AIS. We will then give some illustrative real-world problems suitable for AIS use and show a step-by-step algorithm walkthrough. A comparison of AIS to other well-known algorithms and areas for future work will round this keynote off. It should be noted that as AIS is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from the examples given here.
Resumo:
The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.
Resumo:
As climate change continues to impact socio-ecological systems, tools that assist conservation managers to understand vulnerability and target adaptations are essential. Quantitative assessments of vulnerability are rare because available frameworks are complex and lack guidance for dealing with data limitations and integrating across scales and disciplines. This paper describes a semi-quantitative method for assessing vulnerability to climate change that integrates socio-ecological factors to address management objectives and support decision-making. The method applies a framework first adopted by the Intergovernmental Panel on Climate Change and uses a structured 10-step process. The scores for each framework element are normalized and multiplied to produce a vulnerability score and then the assessed components are ranked from high to low vulnerability. Sensitivity analyses determine which indicators most influence the analysis and the resultant decision-making process so data quality for these indicators can be reviewed to increase robustness. Prioritisation of components for conservation considers other economic, social and cultural values with vulnerability rankings to target actions that reduce vulnerability to climate change by decreasing exposure or sensitivity and/or increasing adaptive capacity. This framework provides practical decision-support and has been applied to marine ecosystems and fisheries, with two case applications provided as examples: (1) food security in Pacific Island nations under climate-driven fish declines, and (2) fisheries in the Gulf of Carpentaria, northern Australia. The step-wise process outlined here is broadly applicable and can be undertaken with minimal resources using existing data, thereby having great potential to inform adaptive natural resource management in diverse locations.
Resumo:
Findings on the role that emotion plays in human behavior have transformed Artificial Intelligence computations. Modern research explores how to simulate more intelligent and flexible systems. Several studies focus on the role that emotion has in order to establish values for alternative decision and decision outcomes. For instance, Busemeyer et al. (2007) argued that emotional state affects the subjectivity value of alternative choice. However, emotional concepts in these theories are generally not defined formally and it is difficult to describe in systematic detail how processes work. In this sense, structures and processes cannot be explicitly implemented. Some attempts have been incorporated into larger computational systems that try to model how emotion affects human mental processes and behavior (Becker-Asano & Wachsmuth, 2008; Marinier, Laird & Lewis, 2009; Marsella & Gratch, 2009; Parkinson, 2009; Sander, Grandjean & Scherer, 2005). As we will see, some tutoring systems have explored this potential to inform user models. Likewise, dialogue systems, mixed-initiative planning systems, or systems that learn from observation could also benefit from such an approach (Dickinson, Brew & Meurers, 2013; Jurafsky & Martin, 2009). That is, considering emotion as interaction can be relevant in order to explain the dynamic role it plays in action and cognition (see Boehner et al., 2007).
Resumo:
With global markets and global competition, pressures are placed on manufacturing organizations to compress order fulfillment times, meet delivery commitments consistently and also maintain efficiency in operations to address cost issues. This chapter argues for a process perspective on planning, scheduling and control that integrates organizational planning structures, information systems as well as human decision makers. The chapter begins with a reconsideration of the gap between theory and practice, in particular for classical scheduling theory and hierarchical production planning and control. A number of the key studies of industrial practice are then described and their implications noted. A recent model of scheduling practice derived from a detailed study of real businesses is described. Socio-technical concepts are then introduced and their implications for the design and management of planning, scheduling and control systems are discussed. The implications of adopting a process perspective are noted along with insights from knowledge management. An overview is presented of a methodology for the (re-)design of planning, scheduling and control systems that integrates organizational, system and human perspectives. The most important messages from the chapter are then summarized.
Resumo:
Part 21: Mobility and Logistics
Resumo:
In a principal-agent model we analyze the firm’s decision to adopt an informal or a standardized Environmental Management System (EMS). Our results are consistent with empirical evidence in several respects. A standardized EMS increases the internal control at the cost of introducing some degree of rigidity that entails an endogenous setup cost. Standardized systems are more prone to be adopted by big and well established firms and under tougher environmental policies. Firms with standardized EMS tend to devote more effort to abatement although this effort results in lower pollution only if public incentives are strong enough, suggesting a complementarity relationship between standardized EMS and public policies. Emission charges have both a marginal effect on abatement and a qualitative effect on the adoption decision that may induce a conflict between private and public interests. As a result of the combination of these two effects it can be optimal for the government to distort the tax in a specific way in order to push the firm to choose the socially optimal EMS. The introduction of standardized systems can result in win-win situations where firms, society and the environment get better off.
Resumo:
As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system
Resumo:
The current Amazon landscape consists of heterogeneous mosaics formed by interactions between the original forest and productive activities. Recognizing and quantifying the characteristics of these landscapes is essential for understanding agricultural production chains, assessing the impact of policies, and in planning future actions. Our main objective was to construct the regionalization of agricultural production for Rondônia State (Brazilian Amazon) at the municipal level. We adopted a decision tree approach, using land use maps derived from remote sensing data (PRODES and TerraClass) combined with socioeconomic data. The decision trees allowed us to allocate municipalities to one of five agricultural production systems: (i) coexistence of livestock production and intensive agriculture; (ii) semi-intensive beef and milk production; (iii) semi-intensive beef production; (iv) intensive beef and milk production, and; (v) intensive beef production. These production systems are, respectively, linked to mechanized agriculture (i), traditional cattle farming with low management, with (ii) or without (iii) a significant presence of dairy farming, and to more intensive livestock farming with (iv) or without (v) a significant presence of dairy farming. The municipalities and associated production systems were then characterized using a wide variety of quantitative metrics grouped into four dimensions: (i) agricultural production; (ii) economics; (iii) territorial configuration, and; (iv) social characteristics. We found that production systems linked to mechanized agriculture predominate in the south of the state, while intensive farming is mainly found in the center of the state. Semi-intensive livestock farming is mainly located close to the southwest frontier and in the north of the state, where human occupation of the territory is not fully consolidated. This distributional pattern reflects the origins of the agricultural production system of Rondônia. Moreover, the characterization of the production systems provides insights into the pattern of occupation of the Amazon and the socioeconomic consequences of continuing agricultural expansion.
Resumo:
n decentralised rural electrification through solar home systems, private companies and promoting institutions are faced with the problem of deploying maintenance structures to operate and guarantee the service of the solar systems for long periods (ten years or more). The problems linked to decentralisation, such as the dispersion of dwellings, difficult access and maintenance needs, makes it an arduous task. This paper proposes an innovative design tool created ad hoc for photovoltaic rural electrification based on a real photovoltaic rural electrification program in Morocco as a special case study. The tool is developed from a mathematical model comprising a set of decision variables (location, transport, etc.) that must meet certain constraints and whose optimisation criterion is the minimum cost of the operation and maintenance activity assuming an established quality of service. The main output of the model is the overall cost of the maintenance structure. The best location for the local maintenance headquarters and warehouses in a given region is established, as are the number of maintenance technicians and vehicles required.
Resumo:
The objective of this research is to identify the factors that influence the migration of free software to proprietary software, or vice-versa. The theoretical framework was developed in light of the Diffusion of Innovations Theory (DIT) proposed by Rogers (1976, 1995), and the Unified Theory of Acceptance and Use of Technology (UTAUT) proposed by Venkatesh, Morris, Davis and Davis (2003). The research was structured in two phases: the first phase was exploratory, characterized by adjustments of the revised theory to fit Brazilian reality and the identification of companies that could be the subject of investigation; and the second phase was qualitative, in which case studies were conducted at ArcelorMittal Tubarão (AMT), a private company that migrated from proprietary software (Unix) to free software (Linux), and the city government of Serra, in Espírito Santo state, a public organization that migrated from free software (OpenOffice) to proprietary (MS Office). The results show that software migration decision takes into account factors that go beyond issues involving technical or cost aspects, such as cultural barriers, user rejection and resistance to change. These results underscore the importance of social aspects, which can play a decisive role in the decision regarding software migration and its successful implementation.
Resumo:
The literature clearly links the quality and capacity of a country’s infrastructure to its economic growth and competitiveness. This thesis analyses the historic national and spatial distribution of investment by the Irish state in its physical networks (water, wastewater and roads) across the 34 local authorities and examines how Ireland is perceived internationally relative to its economic counterparts. An appraisal of the current status and shortcomings of Ireland’s infrastructure is undertaken using key stakeholders from foreign direct investment companies and national policymakers to identify Ireland's infrastructural gaps, along with current challenges in how the country is delivering infrastructure. The output of these interviews identified many issues with how infrastructure decision-making is currently undertaken. This led to an evaluation of how other countries are informing decision-making, and thus this thesis presents a framework of how and why Ireland should embrace a Systems of Systems (SoS) methodology approach to infrastructure decision-making going forward. In undertaking this study a number of other infrastructure challenges were identified: significant political interference in infrastructure decision-making and delivery the need for a national agency to remove the existing ‘silo’ type of mentality to infrastructure delivery how tax incentives can interfere with the market; and their significance. The two key infrastructure gaps identified during the interview process were: the need for government intervention in the rollout of sufficient communication capacity and at a competitive cost outside of Dublin; and the urgent need to address water quality and capacity with approximately 25% of the population currently being served by water of unacceptable quality. Despite considerable investment in its national infrastructure, Ireland’s infrastructure performance continues to trail behind its economic partners in the Eurozone and OECD. Ireland is projected to have the highest growth rate in the euro zone region in 2015 and 2016, albeit that it required a bailout in 2010, and, at the time of writing, is beginning to invest in its infrastructure networks again. This thesis proposes the development and implementation of a SoS approach for infrastructure decision-making which would be based on: existing spatial and capacity data of each of the constituent infrastructure networks; and scenario computation and analysis of alternative drivers eg. Demographic change, economic variability and demand/capacity constraints. The output from such an analysis would provide valuable evidence upon which policy makers and decision makers alike could rely, which has been lacking in historic investment decisions.
Resumo:
The use of Cyber Physical Systems (CPS) to optimise industrial energy systems is an approach which has the potential to positively impact on manufacturing sector energy efficiency. The need to obtain data to facilitate the implementation of a CPS in an industrial energy system is however a complex task which is often implemented in a non-standardised way. The use of the 5C CPS architecture has the potential to standardise this approach. This paper describes a case study where data from a Combined Heat and Power (CHP) system located in a large manufacturing company was fused with grid electricity and gas models as well as a maintenance cost model using the 5C architecture with a view to making effective decisions on its cost efficient operation. A control change implemented based on the cognitive analysis enabled via the 5C architecture implementation has resulted in energy cost savings of over €7400 over a four-month period, with energy cost savings of over €150,000 projected once the 5C architecture is extended into the production environment.