974 resultados para Data Interpretation, Statistical


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This presentation aims to make understandable the use and application context of two Webometrics techniques, the logs analysis and Google Analytics, which currently coexist in the Virtual Library of the UOC. In this sense, first of all it is provided a comprehensive introduction to webometrics and then it is analysed the case of the UOC's Virtual Library focusing on the assimilation of these techniques and the considerations underlying their use, and covering in a holistic way the process of gathering, processing and data exploitation. Finally there are also provided guidelines for the interpretation of the metric variables obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to obtain a high-resolution Pleistocene stratigraphy, eleven continuouslycored boreholes, 100 to 220m deep were drilled in the northern part of the PoPlain by Regione Lombardia in the last five years. Quantitative provenanceanalysis (QPA, Weltje and von Eynatten, 2004) of Pleistocene sands was carriedout by using multivariate statistical analysis (principal component analysis, PCA,and similarity analysis) on an integrated data set, including high-resolution bulkpetrography and heavy-mineral analyses on Pleistocene sands and of 250 majorand minor modern rivers draining the southern flank of the Alps from West toEast (Garzanti et al, 2004; 2006). Prior to the onset of major Alpine glaciations,metamorphic and quartzofeldspathic detritus from the Western and Central Alpswas carried from the axial belt to the Po basin longitudinally parallel to theSouthAlpine belt by a trunk river (Vezzoli and Garzanti, 2008). This scenariorapidly changed during the marine isotope stage 22 (0.87 Ma), with the onset ofthe first major Pleistocene glaciation in the Alps (Muttoni et al, 2003). PCA andsimilarity analysis from core samples show that the longitudinal trunk river at thistime was shifted southward by the rapid southward and westward progradation oftransverse alluvial river systems fed from the Central and Southern Alps.Sediments were transported southward by braided river systems as well as glacialsediments transported by Alpine valley glaciers invaded the alluvial plain.Kew words: Detrital modes; Modern sands; Provenance; Principal ComponentsAnalysis; Similarity, Canberra Distance; palaeodrainage

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = f + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix .Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = T + (2)where = Cov(e) has a diagonal form. The diagonal elements of as well as theloadings matrix are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of and in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examples of compositional data. The simplex, a suitable sample space for compositional data and Aitchison's geometry. R, a free language and environment for statistical computing and graphics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compositional data naturally arises from the scientific analysis of the chemicalcomposition of archaeological material such as ceramic and glass artefacts. Data of thistype can be explored using a variety of techniques, from standard multivariate methodssuch as principal components analysis and cluster analysis, to methods based upon theuse of log-ratios. The general aim is to identify groups of chemically similar artefactsthat could potentially be used to answer questions of provenance.This paper will demonstrate work in progress on the development of a documentedlibrary of methods, implemented using the statistical package R, for the analysis ofcompositional data. R is an open source package that makes available very powerfulstatistical facilities at no cost. We aim to show how, with the aid of statistical softwaresuch as R, traditional exploratory multivariate analysis can easily be used alongside, orin combination with, specialist techniques of compositional data analysis.The library has been developed from a core of basic R functionality, together withpurpose-written routines arising from our own research (for example that reported atCoDaWork'03). In addition, we have included other appropriate publicly availabletechniques and libraries that have been implemented in R by other authors. Availablefunctions range from standard multivariate techniques through to various approaches tolog-ratio analysis and zero replacement. We also discuss and demonstrate a smallselection of relatively new techniques that have hitherto been little-used inarchaeometric applications involving compositional data. The application of the libraryto the analysis of data arising in archaeometry will be demonstrated; results fromdifferent analyses will be compared; and the utility of the various methods discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

compositions is a new R-package for the analysis of compositional and positive data.It contains four classes corresponding to the four different types of compositional andpositive geometry (including the Aitchison geometry). It provides means for computation,plotting and high-level multivariate statistical analysis in all four geometries.These geometries are treated in an fully analogous way, based on the principle of workingin coordinates, and the object-oriented programming paradigm of R. In this way,called functions automatically select the most appropriate type of analysis as a functionof the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,various compositional plots (boxplots, barplots, piecharts) and extensive graphical toolsfor principal components. Afterwards, ortion and proportion lines, straight lines andellipses in all geometries can be added to plots. The package is accompanied by ahands-on-introduction, documentation for every function, demos of the graphical capabilitiesand plenty of usage examples. It allows direct and parallel computation inall four vector spaces and provides the beginner with a copy-and-paste style of dataanalysis, while letting advanced users keep the functionality and customizability theydemand of R, as well as all necessary tools to add own analysis routines. A completeexample is included in the appendix

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developments in the statistical analysis of compositional data over the last twodecades have made possible a much deeper exploration of the nature of variability,and the possible processes associated with compositional data sets from manydisciplines. In this paper we concentrate on geochemical data sets. First we explainhow hypotheses of compositional variability may be formulated within the naturalsample space, the unit simplex, including useful hypotheses of subcompositionaldiscrimination and specific perturbational change. Then we develop through standardmethodology, such as generalised likelihood ratio tests, statistical tools to allow thesystematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require specialconstruction. We comment on the use of graphical methods in compositional dataanalysis and on the ordination of specimens. The recent development of the conceptof compositional processes is then explained together with the necessary tools for astaying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland.Finally we point out a number of unresolved problems in the statistical analysis ofcompositional processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R from http://www.r-project.org/ is GNU S a language and environment for statistical computingand graphics. The environment in which many classical and modern statistical techniques havebeen implemented, but many are supplied as packages. There are 8 standard packages and many moreare available through the cran family of Internet sites http://cran.r-project.org .We started to develop a library of functions in R to support the analysis of mixtures and our goal isa MixeR package for compositional data analysis that provides support foroperations on compositions: perturbation and power multiplication, subcomposition with or withoutresiduals, centering of the data, computing Aitchisons, Euclidean, Bhattacharyya distances,compositional Kullback-Leibler divergence etc.graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features:barycenter, geometric mean of the data set, the percentiles lines, marking and coloring ofsubsets of the data set, theirs geometric means, notation of individual data in the set . . .dealing with zeros and missing values in compositional data sets with R procedures for simpleand multiplicative replacement strategy,the time series analysis of compositional data.Well present the current status of MixeR development and illustrate its use on selected data sets

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The statistical analysis of compositional data is commonly used in geological studies.As is well-known, compositions should be treated using logratios of parts, which aredifficult to use correctly in standard statistical packages. In this paper we describe thenew features of our freeware package, named CoDaPack, which implements most of thebasic statistical methods suitable for compositional data. An example using real data ispresented to illustrate the use of the package

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data.Many of the issues that are discussed with reference to the statistical analysis of compositionaldata have a natural counterpart in the construction of a Bayesian statistical model for categoricaldata.This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986)in his seminal book on compositional data. Particular emphasis is put on the problem of whatparameterization to use

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main instrument used in psychological measurement is the self-report questionnaire. One of its majordrawbacks however is its susceptibility to response biases. A known strategy to control these biases hasbeen the use of so-called ipsative items. Ipsative items are items that require the respondent to makebetween-scale comparisons within each item. The selected option determines to which scale the weight ofthe answer is attributed. Consequently in questionnaires only consisting of ipsative items everyrespondent is allotted an equal amount, i.e. the total score, that each can distribute differently over thescales. Therefore this type of response format yields data that can be considered compositional from itsinception.Methodological oriented psychologists have heavily criticized this type of item format, since the resultingdata is also marked by the associated unfavourable statistical properties. Nevertheless, clinicians havekept using these questionnaires to their satisfaction. This investigation therefore aims to evaluate bothpositions and addresses the similarities and differences between the two data collection methods. Theultimate objective is to formulate a guideline when to use which type of item format.The comparison is based on data obtained with both an ipsative and normative version of threepsychological questionnaires, which were administered to 502 first-year students in psychology accordingto a balanced within-subjects design. Previous research only compared the direct ipsative scale scoreswith the derived ipsative scale scores. The use of compositional data analysis techniques also enables oneto compare derived normative score ratios with direct normative score ratios. The addition of the secondcomparison not only offers the advantage of a better-balanced research strategy. In principle it also allowsfor parametric testing in the evaluation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The statistical analysis of compositional data should be treated using logratios of parts,which are difficult to use correctly in standard statistical packages. For this reason afreeware package, named CoDaPack was created. This software implements most of thebasic statistical methods suitable for compositional data.In this paper we describe the new version of the package that now is calledCoDaPack3D. It is developed in Visual Basic for applications (associated with Excel),Visual Basic and Open GL, and it is oriented towards users with a minimum knowledgeof computers with the aim at being simple and easy to use.This new version includes new graphical output in 2D and 3D. These outputs could bezoomed and, in 3D, rotated. Also a customization menu is included and outputs couldbe saved in jpeg format. Also this new version includes an interactive help and alldialog windows have been improved in order to facilitate its use.To use CoDaPack one has to access Excel and introduce the data in a standardspreadsheet. These should be organized as a matrix where Excel rows correspond tothe observations and columns to the parts. The user executes macros that returnnumerical or graphical results. There are two kinds of numerical results: new variablesand descriptive statistics, and both appear on the same sheet. Graphical output appearsin independent windows. In the present version there are 8 menus, with a total of 38submenus which, after some dialogue, directly call the corresponding macro. Thedialogues ask the user to input variables and further parameters needed, as well aswhere to put these results. The web site http://ima.udg.es/CoDaPack contains thisfreeware package and only Microsoft Excel under Microsoft Windows is required torun the software.Kew words: Compositional data Analysis, Software

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE. The main goal of this paper is to obtain a classification model based on feed-forward multilayer perceptrons in order to improve postpartum depression prediction during the 32 weeks after childbirth with a high sensitivity and specificity and to develop a tool to be integrated in a decision support system for clinicians. MATERIALS AND METHODS. Multilayer perceptrons were trained on data from 1397 women who had just given birth, from seven Spanish general hospitals, including clinical, environmental and genetic variables. A prospective cohort study was made just after delivery, at 8 weeks and at 32 weeks after delivery. The models were evaluated with the geometric mean of accuracies using a hold-out strategy. RESULTS. Multilayer perceptrons showed good performance (high sensitivity and specificity) as predictive models for postpartum depression. CONCLUSIONS. The use of these models in a decision support system can be clinically evaluated in future work. The analysis of the models by pruning leads to a qualitative interpretation of the influence of each variable in the interest of clinical protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the eighties, John Aitchison (1986) developed a new methodological approach for the statistical analysis of compositional data. This new methodology was implemented in Basic routines grouped under the name CODA and later NEWCODA inMatlab (Aitchison, 1997). After that, several other authors have published extensions to this methodology: Marn-Fernndez and others (2000), Barcel-Vidal and others (2001), Pawlowsky-Glahn and Egozcue (2001, 2002) and Egozcue and others (2003). (...)