995 resultados para DNA Checkerboard hybridization
Resumo:
The minimum chromosome number of Glomus intraradices was assessed through cloning and sequencing of the highly divergent telomere-associated sequences (TAS) and by pulsed field gel electrophoresis (PFGE). The telomere of G. intraradices, as in other filamentous fungi, consists of TTAGGG repeats, this was confirmed using Bal31 nuclease time course reactions. Telomere length was estimated to be roughly 0.9 kb by Southern blots on genomic DNA and a telomere probe. We have identified six classes of cloned chromosomal termini based on the TAS. An unusually high genetic variation was observed within two of the six TAS classes. To further assess the total number of chromosome termini, we used telomere fingerprinting. Surprisingly, all hybridization patterns showed smears, which demonstrate that TAS are remarkably variable in the G. intraradices genome. These analyses predict the presence of at least three chromosomes in G. intraradices while PFGE showed a pattern of four bands ranging from 1.2 to 1.5 Mb. Taken together, our results indicate that there are at least four chromosomes in G. intraradices but there are probably more. The information on TAS and telomeres in the G. intradicies will be essential for making a physical map of the G. intraradices genome and could provide molecular markers for future studies of genetic variation among nuclei in these multigenomic fungi.
Resumo:
Analysis of the genomes of schistosomes and one of their intermediate hosts, Biomphalaria glabrata, using Random Amplified Polymorphic DNA (RAPD) demonstrated that intraspecific genetic polymorphism in the parasite is limited but in the snail is highly pronounced. This suggests an important role for the snail in the determination of the epidemiology of the disease. In addition to their intraspecific stability, schistosome derived RAPDs exhibit a high level of interspecific polymorphism and are thus ideal for the construction of phylogenetic trees. For the detection of intraspecific polymorphisms extensive variation in the mitochondrial DNA is being exploited for the development of a PCR based test for Schistosoma mansoni. Gene level polymorphisms are being analyzed by Low Stringency Single Specific Primer PCR.
Resumo:
DNA based techniques have proved to be very useful methods to study trophic relationships 17 between pests and their natural enemies. However, most predators are best defined as omnivores, 18 and the identification of plant-specific DNA should also allow the identification of the plant 19 species the predators have been feeding on. In this study, a PCR approach based on the 20 development of specific primers was developed as a self-marking technique to detect plant DNA 21 within the gut of one heteropteran omnivorous predator (Macrolophus pygmaeus) and two 22 lepidopteran pest species (Helicoverpa armigera and Tuta absoluta). Specific tomato primers 23 were designed from the ITS 1-2 region, which allowed the amplification of a tomato DNA 24 fragment of 332 bp within the three insect species tested in all cases (100% of detection at t = 0) 25 and did not detect DNA of other plants nor of the starved insects. Plant DNA half-lives at 25ºC 26 ranged from 5.8h, to 27.7h and 28.7h within M. pygmaeus, H. armigera and T. absoluta, 27 respectively. Tomato DNA detection within field collected M. pygmaeus suggests dietary mixing 28 in this omnivorous predator and showed a higher detection of tomato DNA in females and 29 nymphs than males. This study provides a useful tool to detect and to identify plant food sources 30 of arthropods and to evaluate crop colonization from surrounding vegetation in conservation 31 biological control programs.
Resumo:
To better undesrtand the distribution of Culex pipiens and Cx. quinquefasciatus in Argentina, samples were collected from six localities situated in a North-South line from Castelli (Chaco Province) to Puerto Madryn (Chubut Province). Identification was based on the morphology of male genitalia. Only Cx. quinquefasciatus was found in Castelli and Esperanza, while in Rosario, 95.3% belonged to this species and 4.7% represented hybrid forms. Southern samples included only Cx. pipiens. With the purpose of verfying if Cx. pipiens and Cx. quinquefasciatus hybridize, different crosses between the two species were perfomed. All crosses produced viable egg rafts. Hatching ranged from 70 to 100%, except in one cross, female Cx. pipiens x male Cx. quinquefasciatus, where a high incompatibility was observed (11.1%hatch). The F1 hybrids obtained all crosses were fertile. The finding of hybrid forms in nature can be interpreted as evidence for subspecific status of Cx. pipiens and Cx. quinquefasciatus in Argentina.
Resumo:
Species delimitation has been invigorated as a discipline in systematics by an influx of new character sets, analytical methods, and conceptual advances. We use genetic data from 68 markers, combined with distributional, bioclimatic, and coloration information, to hypothesize boundaries of evolutionarily independent lineages (species) within the widespread and highly variable nominal fire ant species Solenopsis saevissima, a member of a species group containing invasive pests as well as species that are models for ecological and evolutionary research. Our integrated approach uses diverse methods of analysis to sequentially test whether populations meet specific operational criteria (contingent properties) for candidacy as morphologically cryptic species, including genetic clustering, monophyly, reproductive isolation, and occupation of distinctive niche space. We hypothesize that nominal S. saevissima comprises at least 4-6 previously unrecognized species, including several pairs whose parapatric distributions implicate the development of intrinsic premating or postmating barriers to gene flow. Our genetic data further suggest that regional genetic differentiation in S. saevissima has been influenced by hybridization with other nominal species occurring in sympatry or parapatry, including the quite distantly related Solenopsis geminata. The results of this study illustrate the importance of employing different classes of genetic data (coding and noncoding regions and nuclear and mitochondrial DNA [mtDNA] markers), different methods of genetic data analysis (tree-based and non-tree based methods), and different sources of data (genetic, morphological, and ecological data) to explicitly test various operational criteria for species boundaries in clades of recently diverged lineages, while warning against over reliance on any single data type (e.g., mtDNA sequence variation) when drawing inferences.
Resumo:
Species-specific Random Amplified Polymorphic DNA-Polymerase chain Reaction (RAPD-PCR) markers were used to identify four species related to Anopheles (Nyssorhynchus) albitarsis Lynch-Arribàlzaga from 12 sites in Brazil and 4 in Venezuela. In a previous study (Wilkerson et al. 1995), which included sites in Paraguay and Argentina, these four species were designated "A", "B", "C" and "D". It was hypothesized that species A is An. (Nys.) albitarsis, species B is undescribed, species C is An. (Nys) marajoara Galvão and Damasceno and species D is An. (Nys.) deaneorum Rosa-Freitas. Species D, previously characterized by RAPD-PCR from a small sample from northern Argentina and southern Brazil, is reported here from the type locality of An. (Nys.) deaneorum, Guajará-Mirim, state of Rondônia, Brazil. Species C and D were found by RAPD-PCR to be sympatric at Costa Marques, state of Rondônia, Brazil. Species A and C have yet to be encountered at the same locality. The RAPD markers for species C were found to be conserved over 4,620 km; from Iguape, state of São Paulo, Brazil to rio Socuavo, state of Zulia, Venezuela. RAPD-PCR was determined to be an effective means for the identification of unknown species within this species complex.
Resumo:
Primary sensory neurons display various neuronal phenotypes which may be influenced by factors present in central or peripheral targets. In the case of DRG cells expressing substance P (SP), the influence of peripheral or central targets was tested on the neuronal expression of this neuropeptide. DRG cells were cultured from chick embryo at E6 or E10 (before or after establishment of functional connections with targets). Preprotachykinin mRNA was visualized in DRG cell cultures by either Northern blot or in situ hybridization using an antisense labeled riboprobe, while the neuropeptide SP was detected by immunostaining with a monoclonal antibody. In DRG cell cultures from E10, only 60% of neurons expressed SP. In contrast, DRG cell cultures performed at E6 showed a significant hybridization signal and SP-like immunoreactivity in virtually all the neurons (98%). The addition of extracts from muscle, skin, brain or spinal cord to DRG cells cultured at E6 reduced by 20% the percentage of neurons which express preprotachykinin mRNA and SP-like immunoreactivity. Our results indicate that factors issued from targets inhibit SP-expression by a subset of primary sensory neurons and act on the transcriptional control of preprotachykinin gene.
Resumo:
Sequence analysis of Leishmania (Viannia) kDNA minicircles and analysis of multiple sequence alignments of the conserved region (minirepeats) of five distinct minicircles from L. (V.) braziliensis species with corresponding sequences derived from other dermotropic leishmanias indicated the presence of a sub-genus specific sequence. An oligonucleotide bearing this sequence was designed and used as a molecular probe, being able to recognize solely the sub-genus Viannia species in hybridization experiments. A dendrogram reflecting the homologies among the minirepeat sequences was constructed. Sequence clustering was obtained corresponding to the traditional classification based on similarity of biochemical, biological and parasitological characteristics of these Leishmania species, distinguishing the Old World dermotropic leishmanias, the New World dermotropic leishmanias of the sub-genus Leishmania and of the sub-genus Viannia.
Resumo:
Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.
Resumo:
The protection elicited by the intramuscular injection of two plasmid DNAs encoding Leishmania major cysteine proteinase type I (CPb) and type II (CPa) was evaluated in a murine model of experimental cutaneous leishmaniasis. BALB/c mice were immunized either separately or with a cocktail of the two plasmids expressing CPa or CPb. It was only when the cpa and cpb genes were co-injected that long lasting protection against parasite challenge was achieved. Similar protection was also observed when animals were first immunized with cpa/cpb DNA followed by recombinant CPa/CPb boost. Analysis of the immune response showed that protected animals developed a specific Th1 immune response, which was associated with an increase of IFN-gamma production. This is the first report demonstrating that co-injection of two genes expressing different antigens induces a long lasting protective response, whereas the separate injection of cysteine proteases genes is not protective.
Resumo:
In principle, we should be glad that Eric Kmiec and his colleagues published in Science's STKE (1) a detailed experimental protocol of their gene repair method (2, 3). However, a careful reading of their contribution raises more doubts about the method. The research published in Science five years ago by Kmiec and his colleagues was said to demonstrate that chimeric RNA-DNA oligonucleotides could correct the mutation responsible for sickle cell anemia with 50% efficiency (4). Such a remarkable result prompted many laboratories to attempt to replicate the research or utilize the method on their own systems. However, if the method worked at all, which it rarely did, the achieved efficiency was usually lower by several orders of magnitude. Now, in the Science's STKE protocol, we are given crucial information about the method and why it is so important to utilize these expensive chimeric RNA-DNA constructs. In the introduction we are told that the RNA-DNA duplex is more stable than a DNA-DNA duplex and so extends the half-life of the complexes formed between the targeted DNA and the chimeric RNA-DNA oligonucleotides. This logical explanation, however, conflicts with the statement in the section entitled "Transfection with Oligonucleotides and Plasmid DNA" that Kmiec and colleagues have recently demonstrated that classical single-stranded DNA oligonucleotides with a few protective phosphothioate linkages have a "gene repair conversion frequency rivaling that of the RNA/DNA chimera". Indeed, the research cited for that result actually states that single-stranded DNA oligonucleotides are in fact several-fold more efficient (3.7-fold) than the RNA-DNA chimeric constructs (5). If that is the case, it raises the question of why Kmiec and colleagues emphasize the importance of the RNA in their original chimeric constructs. Their own new results show that modified single-stranded DNA oligonucleotides are more effective than the expensive RNA-DNA hybrids. Moreover, the current efficiency of the gene repair by RNA-DNA hybrids, according to Kmiec and colleagues in their recent paper is only 4×10-4 even after several hours of pre-selection permitting multiplification of bacterial cells with the corrected plasmid (5). This efficiency is much lower than the 50% value reported five years ago, but is assuredly much closer to the reality.
Resumo:
Two hundred and thirty paraffin-embedded biopsies obtained from female cervical lesions were tested for the presence of human papillomavirus (HPV) types 6/11,16/18 and 31/33/35 DNA using non-isotopic in situ hybridization. Specimens were classified according to the Bethesda System in low grade squamous intraepithelial lesion (LSIL), high grade SIL (HSIL) and squamous cell carcinoma (SCC). HPV prevalence ranged from 92.5% in LSIL to 68.5% in SCC. Benign types were prevalent in LSILs while oncogenic types infected predominantly HSILs and SCC. HPV infection showed to be age-dependent, but no significant relation to race has been detected. Patients were analyzed through a five-year period: 20.7% of the lesions spontaneously regressed while 48.9% persisted and 30.4% progressed to carcinoma. Patients submitted to treatment showed a 19.4% recurrence rate. High risk types were present in 78.6% (CrudeOR 13.8, P=0.0003) of the progressive lesions, and in 73.7% of the recurrent SILs (COR 19.3, P=0.0000001). Possible co-factors have also been evaluated: history of other sexually transmitted diseases showed to be positively related either to progression (Adjusted OR 13.0, P=0.0002) or to recurrence (AOR 17.2, P=0.0002) while oral contraceptive use and tobacco smoking were not significantly related to them (P>0.1). Association of two or more co-factors also proved to be related to both progression and recurrence, indicating that they may interact with HPV infection in order to increase the risk of developing malignant lesions.
Resumo:
STAT transcription factors are expressed in many cell types and bind to similar sequences. However, different STAT gene knock-outs show very distinct phenotypes. To determine whether differences between the binding specificities of STAT proteins account for these effects, we compared the sequences bound by STAT1, STAT5A, STAT5B, and STAT6. One sequence set was selected from random oligonucleotides by recombinant STAT1, STAT5A, or STAT6. For another set including many weak binding sites, we quantified the relative affinities to STAT1, STAT5A, STAT5B, and STAT6. We compared the results to the binding sites in natural STAT target genes identified by others. The experiments confirmed the similar specificity of different STAT proteins. Detailed analysis indicated that STAT5A specificity is more similar to that of STAT6 than that of STAT1, as expected from the evolutionary relationships. The preference of STAT6 for sites in which the half-palindromes (TTC) are separated by four nucleotides (N(4)) was confirmed, but analysis of weak binding sites showed that STAT6 binds fairly well to N(3) sites. As previously reported, STAT1 and STAT5 prefer N(3) sites; however, STAT5A, but not STAT1, weakly binds N(4) sites. None of the STATs bound to half-palindromes. There were no specificity differences between STAT5A and STAT5B.