954 resultados para DISTRIBUTION PATTERNS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to use the plantar pressure insole for estimating the three-dimensional ground reaction force (GRF) as well as the frictional torque (T(F)) during walking. Eleven subjects, six healthy and five patients with ankle disease participated in the study while wearing pressure insoles during several walking trials on a force-plate. The plantar pressure distribution was analyzed and 10 principal components of 24 regional pressure values with the stance time percentage (STP) were considered for GRF and T(F) estimation. Both linear and non-linear approximators were used for estimating the GRF and T(F) based on two learning strategies using intra-subject and inter-subjects data. The RMS error and the correlation coefficient between the approximators and the actual patterns obtained from force-plate were calculated. Our results showed better performance for non-linear approximation especially when the STP was considered as input. The least errors were observed for vertical force (4%) and anterior-posterior force (7.3%), while the medial-lateral force (11.3%) and frictional torque (14.7%) had higher errors. The result obtained for the patients showed higher error; nevertheless, when the data of the same patient were used for learning, the results were improved and in general slight differences with healthy subjects were observed. In conclusion, this study showed that ambulatory pressure insole with data normalization, an optimal choice of inputs and a well-trained nonlinear mapping function can estimate efficiently the three-dimensional ground reaction force and frictional torque in consecutive gait cycle without requiring a force-plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding levels of population differentiation and inbreeding are important issues in conservation biology, especially for social Hymenoptera with fragmented and small population sizes. Isolated populations are more vulnerable to genetic loss and extinction than those with extended continuous distributions. However, small populations are not always a consequence of a recent reduction of their habitat. Thus, determining the history of population isolation and current patterns of genetic variation of a species is crucial for its conservation. Rossomyrmex minuchae is a slave-making ant with patchy distribution in South Eastern Spain and is classified as vulnerable by the IUCN. In contrast, the other three known species of the genus are presumed to show more uniform distributions. Here we investigate the genetic diversity and population structure of R. minuchae and compare it with that found in two other species of the genus: R. anatolicus and R. quandratinodum. We conclude that although genetic diversity of R. minuchae is low, there is no evidence of a recent bottleneck, suggesting a gradual and natural fragmentation process. We also show extreme population differentiation at nuclear and mitochondrial markers, and isolation by distance at a local scale. Despite some evidence for inbreeding and low genetic variation within populations, we found almost no diploid males, a finding which contrasts with that expected in inbred Hymenoptera with single locus complementary sex determination. This could mean that sex is determined by another mechanism. We argue that continued low population size means that detrimental effects of inbreeding and low genetic variation are likely in the future. We suggest that a policy of artificial gene flow aimed at increasing within population variation is considered as a management option.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The international allocation of natural resources is determined, not by any ethical or ecological criteria, but by the dominance of market mechanisms. From a core-periphery perspective, this allocation may even be driven by historically determined structural patterns, with a core group of countries whose consumption appropriates most available natural resources, and another group, having low natural resource consumption, which plays a peripheral role. This article consists of an empirical distributional analysis of natural resource consumption (as measured by Ecological Footprints) whose purpose is to assess the extent to which the distribution of consumption responds to polarization (as opposed to mere inequality). To assess this, we estimate and decompose different polarization indices for a balanced sample of 119 countries over the period 1961 to 2007. Our results points toward a polarized distribution which is consistent with a core-periphery framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data. in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In my study, I developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, I assessed the effect of scale on predictor variables and geographic projections of SDM. I also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, I used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, I showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe 61 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the warmer conditions as far as competition is low However, in subalpine grasslands, competition of already present species is probably important and limit establishment of newly arrived species. Results from future simulations also showed that heavy extinctions of alpine plants may start already in 2040, but the latest in 2080. My study also highlighted the importance of fine scale and regional. assessments of climate change impact on mountain vegetation, using more direct predictor variables. Indeed, predictions at the continental scale may fail to predict local refugees or local extinctions, as well as loss of connectivity between local populations. On the other hand, migrations of low-elevation species to higher altitude may be difficult to predict at the local scale. Résumé La forme conique des montagnes ainsi que la diminution de surface dans les hautes altitudes sont reconnues pour exposer plus sensiblement les écosystèmes de montagne au réchauffement global. En outre, les systèmes de montagne seront sans doute soumis durant le 21ème siècle à un réchauffement deux à trois fois plus rapide que celui mesuré durant le 20ème siècle. Dans ce contexte, les modèles prédictifs de distribution géographique de la végétation se sont imposés comme des outils puissants pour de rapides évaluations de l'impact des changements climatiques et de la transformation du paysage par l'homme sur la végétation. Dans mon étude, j'ai développé de nouvelles variables prédictives pour les modèles de distribution, spécifiques à la projection géographique présente et future des plantes dans un système de montagne, en utilisant les Préalpes vaudoises comme zone d'échantillonnage. La méso- et la microtopographie étant particulièrement adaptées pour expliquer les patrons de distribution géographique des plantes dans un environnement montagneux, j'ai testé les effets d'échelle sur les variables prédictives et sur les projections des modèles de distribution. J'ai aussi développé un cadre méthodologique pour tester la robustesse potentielle des modèles lors de projections pour le futur. Finalement, j'ai utilisé un automate cellulaire pour simuler de manière dynamique la migration future des plantes dans le paysage et dans quatre scénarios de changement climatique pour le 21ème siècle. J'ai intégré dans ces simulations des mécanismes et des distances plus réalistes de dispersion de graines. J'ai pu montrer, avec les simulations les plus réalistes, que près du tiers des 284 espèces considérées (28.5%) pourraient être menacées d'extinction en 2100 dans le cas du plus sévère scénario de changement climatique A1. Pour le moins sévère des scénarios B1, seulement 4.6% des espèces sont menacées d'extinctions, mais 54% (153 espèces) risquent de perdre plus 80% de leur habitat initial. Les résultats de monitoring des changements de végétation dans le passé montrent que les plantes peuvent réagir rapidement au réchauffement climatique si la compétition est faible. Dans les prairies subalpines, les espèces déjà présentes limitent certainement l'arrivée de nouvelles espèces par effet de compétition. Les résultats de simulation pour le futur prédisent le début d'extinctions massives dans les Préalpes à partir de 2040, au plus tard en 2080. Mon travail démontre aussi l'importance d'études régionales à échelle fine pour évaluer l'impact des changements climatiques sur la végétation, en intégrant des variables plus directes. En effet, les études à échelle continentale ne tiennent pas compte des micro-refuges, des extinctions locales ni des pertes de connectivité entre populations locales. Malgré cela, la migration des plantes de basses altitudes reste difficile à prédire à l'échelle locale sans modélisation plus globale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate root and water distribution in irrigated banana (Musa sp.), in order to determine the water application efficiency for different drip irrigation emitter patterns. Three drip emitter patterns were studied: two 4-L h-1 emitters per plant (T1), four 4-L h-1 emitters per plant (T2), and five 4-L h-1 emitters per plant (T3). The emitters were placed in a lateral line. In the treatment T3, the emitters formed a continuous strip. The cultivated area used was planted with banana cultivar BRS Tropical, with a 3-m spacing between rows and a 2.5-m spacing between plants. Soil moisture and root length data were collected during the first production cycle at five radial distances and depths, in a 0.20x0.20 m vertical grid. The experiment was carried out in a sandy clay loam Xanthic Hapludox. Soil moisture data were collected every 10 min for a period of five days using TDR probes. Water application efficiency was of 83, 88 and 92% for the systems with two, four and five emitters per plant, respectively. It was verified that an increase in the number of emitters in the lateral line promoted better root distribution, higher water extraction, and less deep percolation losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purposes of this study were to determine the distribution and climatic patterns of current and future physic nut (Jatropha curcas) cultivation regions in Mexico, and to identify possible locations for in vivo germplasm banks establishment, using geographic information systems. Current climatic data were processed by Floramap software to obtain distribution maps and climatic patterns of regions where wild physic nuts could be found. DIVA-GIS software analyzed current climatic data (Worldclim model) and climatic data generated by CCM3 model to identify current and future physic nut cultivation regions, respectively. The distribution map showed that physic nut was present in most of the tropical and subtropical areas of Mexico, which corresponded to three agroclimatic regions. Climate types were Aw2, Aw1, and Bs1, for regions 1, 2 and 3, respectively. Nontoxic genotypes were associated with region 2, and toxic genotypes were associated with regions 1 and 3. According to the current and future cultivation regions identified, the best suitable ones to establish in vivo germplasm collections were the coast of Michoacán and the Isthmus of Tehuantepec, located among the states of Veracruz, Oaxaca and Chiapas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract We have analyzed purine (R) and pyrimidine (Y) codon patterns in variable and constant regions of HIV-1 gp120 in seven patients infected with different HIV-1 subtypes and naive to antiretroviral therapy. We have calculated the relative frequency of each in-frame codon RNY, YNR, RNR, and YNY (N=any nucleotide) in variable and constant regions of gp120, in the sequence within indels and at indels' flanking sites. Our data show that hypervariable regions V1, V2, V4, and V5 are characterized by the presence of long stretches of RNY codons constituting the majority of the sequence portion within insertions/deletions. In full-length gp120 and within inserted/deleted fragments the number of AVT (V=A, C, G) codons did not exceed 50% of the total RNY codons. RNY strings in variable regions spanned up to 21 codons and were always in frame. In contrast, RNY strings in constant regions were mostly out of frame and their length was limited to five codons. The frequency of the codon RNY was found to be significantly higher in variable regions (p<0.0001; t-test), within indels, and at indels' flanking sites (p<0.0001; χ(2) test). Analysis of the distribution of RNY strings equal to or longer than five codons in the full genome of HXB2 also shows that these sequences are mostly out of frame, unless they contain a potential N-glycosylation site or an asparagine. These data suggest that cryptic repeats of RNY may play a role in the genesis of multiple base insertions and deletions in hypervariable regions of gp120.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We modelled the future distribution in 2050 of 975 endemic plant species in southern Africa distributed among seven life forms, including new methodological insights improving the accuracy and ecological realism of predictions of global changes studies by: (i) using only endemic species as a way to capture the full realized niche of species, (ii) considering the direct impact of human pressure on landscape and biodiversity jointly with climate, and (iii) taking species' migration into account. Our analysis shows important promises for predicting the impacts of climate change in conjunction with land transformation. We have shown that the endemic flora of Southern Africa on average decreases with 41% in species richness among habitats and with 39% on species distribution range for the most optimistic scenario. We also compared the patterns of species' sensitivity with global change across life forms, using ecological and geographic characteristics of species. We demonstrate here that species and life form vulnerability to global changes can be partly explained according to species' (i) geographical distribution along climatic and biogeographic gradients, like climate anomalies, (ii) niche breadth or (iii) proximity to barrier preventing migration. Our results confirm that the sensitivity of a given species to global environmental changes depends upon its geographical distribution and ecological proprieties, and makes it possible to estimate a priori its potential sensitivity to these changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide range of modelling algorithms is used by ecologists, conservation practitioners, and others to predict species ranges from point locality data. Unfortunately, the amount of data available is limited for many taxa and regions, making it essential to quantify the sensitivity of these algorithms to sample size. This is the first study to address this need by rigorously evaluating a broad suite of algorithms with independent presence-absence data from multiple species and regions. We evaluated predictions from 12 algorithms for 46 species (from six different regions of the world) at three sample sizes (100, 30, and 10 records). We used data from natural history collections to run the models, and evaluated the quality of model predictions with area under the receiver operating characteristic curve (AUC). With decreasing sample size, model accuracy decreased and variability increased across species and between models. Novel modelling methods that incorporate both interactions between predictor variables and complex response shapes (i.e. GBM, MARS-INT, BRUTO) performed better than most methods at large sample sizes but not at the smallest sample sizes. Other algorithms were much less sensitive to sample size, including an algorithm based on maximum entropy (MAXENT) that had among the best predictive power across all sample sizes. Relative to other algorithms, a distance metric algorithm (DOMAIN) and a genetic algorithm (OM-GARP) had intermediate performance at the largest sample size and among the best performance at the lowest sample size. No algorithm predicted consistently well with small sample size (n < 30) and this should encourage highly conservative use of predictions based on small sample size and restrict their use to exploratory modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The international allocation of natural resources is determined, not by any ethical or ecological criteria, but by the dominance of market mechanisms. From a core-periphery perspective, this allocation may even be driven by historically determined structural patterns, with a core group of countries whose consumption appropriates most available natural resources, and another group, having low natural resource consumption, which plays a peripheral role. This article consists of an empirical distributional analysis of natural resource consumption (as measured by Ecological Footprints) whose purpose is to assess the extent to which the distribution of consumption responds to polarization (as opposed to mere inequality). To assess this, we estimate and decompose different polarization indices for a balanced sample of 119 countries over the period 1961 to 2007. Our results points toward a polarized distribution which is consistent with a core-periphery framework. Keywords: Polarization, Core-Periphery, Ecological Footprint

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs). This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements.Results: Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion: We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. UV irradiance is monitored via different techniques including ground measurements and satellite observations. However it is difficult to translate such observations into human UV exposure or dose because of confounding factors (shape of the exposed surface, shading, behavior, etc.) A collaboration between public health institutions, a meteorological office and an institute specialized in computing techniques developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop this tool, which estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. The radiation components are deduced from corresponding measurements of UV irradiance, and the related UV dose received by each triangle of the virtual manikin is computed accounting for shading by other body parts and eventual protection measures. The model was verified with dosimetric measurements (n=54) in field conditions using a foam manikin as surrogate for an exposed individual. Dosimetric results were compared to the model predictions. The model predicted exposure to solar UV adequately. The symmetric mean absolute percentage error was 13%. Half of the predictions were within 17% range of the measurements. This model allows assessing outdoor occupational and recreational UV exposures, without necessitating time-consuming individual dosimetry, with numerous potential uses in skin cancer prevention and research. Using this tool, we investigated solar UV exposure patterns with respect to the relative contribution of the direct, diffuse and reflected radiation. We assessed exposure doses for various body parts and exposure scenarios of a standing individual (static and dynamic postures). As input, the model used erythemally-weighted ground irradiance data measured in 2009 at Payerne, Switzerland. A year-round daily exposure (8 am to 5 pm) without protection was assumed. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose. Acute diffuse exposures were also obtained for cloudy summer days. The importance of diffuse UV radiation should not be underestimated when advocating preventive measures. Messages focused on avoiding acute direct exposures may be of limited efficiency to prevent skin cancers associated with chronic exposure (e.g., squamous cell carcinomas).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analysed the relationship between changes in land cover patterns and the Eurasian otter occurrence over the course of about 20 years (1985-2006) using multi-temporal Species Distribution Models (SDMs). The study area includes five river catchments covering most of the otter's Italian range. Land cover and topographic data were used as proxies of the ecological requirements of the otter within a 300-m buffer around river courses. We used species presence, pseudo-absence data, and environmental predictors to build past (1985) and current (2006) SDMs by applying an ensemble procedure through the BIOMOD modelling package. The performance of each model was evaluated by measuring the area under the curve (AUC) of the receiver-operating characteristic (ROC). Multi-temporal analyses of species distribution and land cover maps were performed by comparing the maps produced for 1985 and 2006. The ensemble procedure provided a good overall modelling accuracy, revealing that elevation and slope affected the otter's distribution in the past; in contrast, land cover predictors, such as cultivations and forests, were more important in the present period. During the transition period, 20.5% of the area became suitable, with 76% of the new otter presence data being located in these newly available areas. The multi-temporal analysis suggested that the quality of otter habitat improved in the last 20 years owing to the expansion of forests and to the reduction of cultivated fields in riparian belts. The evidence presented here stresses the great potential of riverine habitat restoration and environmental management for the future expansion of the otter in Italy