746 resultados para DIETARY LIPIDS
Resumo:
BACKGROUND/AIMS: Cathepsin S, a protein coded by the CTSS gene, is implicated in adipose tissue biology--this protein enhances adipose tissue development. Our hypothesis is that common variants in CTSS play a role in body weight regulation and in the development of obesity and that these effects are influenced by dietary factors--increased by high protein, glycemic index and energy diets. METHODS: Four tag SNPs (rs7511673, rs11576175, rs10888390 and rs1136774) were selected to capture all common variation in the CTSS region. Association between these four SNPs and several adiposity measurements (BMI, waist circumference, waist for given BMI and being a weight gainer-experiencing the greatest degree of unexplained annual weight gain during follow-up or not) given, where applicable, both as baseline values and gain during the study period (6-8 years) were tested in 11,091 European individuals (linear or logistic regression models). We also examined the interaction between the CTSS variants and dietary factors--energy density, protein content (in grams or in % of total energy intake) and glycemic index--on these four adiposity phenotypes. RESULTS: We found several associations between CTSS polymorphisms and anthropometric traits including baseline BMI (rs11576175 (SNP N°2), p = 0.02, β = -0.2446), and waist change over time (rs7511673 (SNP N°1), p = 0.01, β = -0.0433 and rs10888390 (SNP N°3), p = 0.04, β = -0.0342). In interaction with the percentage of proteins contained in the diet, rs11576175 (SNP N°2) was also associated with the risk of being a weight gainer (p(interaction) = 0.01, OR = 1.0526)--the risk of being a weight gainer increased with the percentage of proteins contained in the diet. CONCLUSION: CTSS variants seem to be nominally associated to obesity related traits and this association may be modified by dietary protein intake.
Resumo:
BACKGROUND: Genetic polymorphisms of transcription factor 7-like 2 (TCF7L2) have been associated with type 2 diabetes and BMI. OBJECTIVE: The objective was to investigate whether TCF7L2 HapA is associated with weight development and whether such an association is modulated by protein intake or by the glycemic index (GI). DESIGN: The investigation was based on prospective data from 5 cohort studies nested within the European Prospective Investigation into Cancer and Nutrition. Weight change was followed up for a mean (±SD) of 6.8 ± 2.5 y. TCF7L2 rs7903146 and rs10885406 were successfully genotyped in 11,069 individuals and used to derive HapA. Multiple logistic and linear regression analysis was applied to test for the main effect of HapA and its interaction with dietary protein or GI. Analyses from the cohorts were combined by random-effects meta-analysis. RESULTS: HapA was associated neither with baseline BMI (0.03 ± 0.07 BMI units per allele; P = 0.6) nor with annual weight change (8.8 ± 11.7 g/y per allele; P = 0.5). However, a previously shown positive association between intake of protein, particularly of animal origin, and subsequent weight change in this population proved to be attenuated by TCF7L2 HapA (P-interaction = 0.01). We showed that weight gain becomes independent of protein intake with an increasing number of HapA alleles. Substitution of protein with either fat or carbohydrates showed the same effects. No interaction with GI was observed. CONCLUSION: TCF7L2 HapA attenuates the positive association between animal protein intake and long-term body weight change in middle-aged Europeans but does not interact with the GI of the diet.
Resumo:
Although FTO is an established obesity-susceptibility locus, it remains unknown whether it influences weight change in adult life and whether diet attenuates this association. Therefore, we investigated the association of FTO-rs9939609 with changes in weight and waist circumference (WC) during 6.8 years follow-up in a large-scale prospective study and examined whether these associations were modified by dietary energy percentage from fat, protein, carbohydrate, or glycemic index (GI). This study comprised data from five countries of European Prospective Investigation into Cancer and Nutrition (EPIC) and was designed as a case-cohort study for weight gain. Analyses included 11,091 individuals, of whom 5,584 were cases (age (SD), 47.6 (7.5) years), defined as those with the greatest unexplained annual weight gain during follow-up and 5,507 were noncases (48.0 (7.3) years), who were compared in our case-noncase (CNC) analyses. Furthermore, 6,566 individuals (47.9 (7.3) years) selected from the total sample (all noncases and 1,059 cases) formed the random subcohort (RSC), used for continuous trait analyses. Interactions were tested by including interaction terms in the models. In the RSC-analyses, FTO-rs9939609 was associated with BMI (β (SE), 0.17 (0.08) kg·m(-2)/allele; P = 0.034) and WC (0.47 (0.21) cm/allele; P = 0.026) at baseline, but not with weight change (5.55 (12.5) g·year(-1)/allele; P = 0.66) during follow up. In the CNC-analysis, FTO-rs9939609 was associated with increased risk of being a weight-gainer (OR: 1.1; P = 0.045). We observed no interaction between FTO-rs9939609 and dietary fat, protein and carbohydrate, and GI on BMI and WC at baseline or on change in weight and WC. FTO-rs9939609 is associated with BMI and WC at baseline, but association with weight gain is weak and only observed for extreme gain. Dietary factors did not influence the associations.
Resumo:
The Gulf is experiencing a pandemic of lifestyle-induced obesity and type 2 diabetes mellitus (T2DM), with rates exceeding 50 and 30%, respectively. It is likely that T2DM represents the tip of a very large metabolic syndrome iceberg, which precedes T2DM by many years and is associated with abnormal/ectopic fat distribution, pathological systemic oxidative stress and inflammation. However, the definitions are still evolving with the role of different fat depots being critical. Hormetic stimuli, which include exercise, calorie restriction, temperature extremes, dehydration and even some dietary components (such as plant polyphenols), may well modulate fat deposition. All induce physiological levels of oxidative stress, which results in mitochondrial biogenesis and increased anti-oxidant capacity, improving metabolic flexibility and the ability to deal with lipids. We propose that the Gulf Metabolic Syndrome results from an unusually rapid loss of hormetic stimuli within an epigenetically important time frame of 2-3 generations. Epigenetics indicates that thriftiness can be programmed by the environment and passed down through several generations. Thus this loss of hormesis can result in continuation of metabolic inflexibility, with mothers exposing the foetus to a milieu that perpetuates a stressed epigenotype. As the metabolic syndrome increases oxidative stress and reduces life expectancy, a better descriptor may therefore be the Lifestyle-Induced Metabolic Inflexibility and accelerated AGEing syndrome – LIMIT-AGE. As life expectancy in the Gulf begins to fall, with perhaps a third of this life being unhealthy – including premature loss of sexual function, it is vital to detect evidence of this condition as early in life as possible. One effective way to do this is by detecting evidence of metabolic inflexibility by studying body fat content and distribution by magnetic resonance (MR). The Gulf Metabolic Syndrome thus represents an accelerated form of the metabolic syndrome induced by the unprecedented rapidity of lifestyle change in the region, the stress of which is being passed from generation to generation and may be accumulative. The fundamental cause is probably due to a rapid increase in countrywide wealth. This has benefited most socioeconomic groups, resulting in the development of an obesogenic environment as the result of the rapid adoption of Western labour saving and stress relieving devices (e.g. cars and air conditioning), as well as the associated high calorie diet.
Resumo:
Evidence has accumulated in recent years that suggests that nitrate from the diet, particularly vegetables, is capable of producing bioactive NO in the vasculature, following bioconversion to nitrite by oral bacteria. The aim of the present review was to consider the current body of evidence for potential beneficial effects of dietary nitrate on blood pressure and endothelial function, with emphasis on evidence from acute and chronic human intervention studies. The studies to date suggest that dietary nitrate acutely lowers blood pressure in healthy humans. An inverse relationship was seen between dose of nitrate consumed and corresponding systolic blood pressure reduction, with doses of nitrate as low as 3 mmol of nitrate reducing systolic blood pressure by 3 mmHg. Moreover, the current studies provide some promising evidence on the beneficial effects of dietary nitrate on endothelial function. In vitro studies suggest a number of potential mechanisms by which dietary nitrate and its sequential reduction to NO may reduce blood pressure and improve endothelial function, such as: acting as a substrate for endothelial NO synthase; increasing vasodilation; inhibiting mitochondrial reactive oxygen species production and platelet aggregation. In conclusion, the evidence for beneficial effects of dietary nitrate on blood pressure and endothelial function is promising. Further long-term randomised controlled human intervention studies assessing the potential effects of dietary nitrate on blood pressure and endothelial function are needed, particularly in individuals with hypertension and at risk of CVD.
Resumo:
Dietary interventions with flavan-3-ols have shown beneficial effects on vascular function. The translation of these findings into the context of the health of the general public requires detailed information on habitual dietary intake. However, only limited data are currently available for European populations. Therefore, in the present study, we assessed the habitual intake of flavan-3-ol monomers, proanthocyanidins (PA) and theaflavins in the European Union (EU) and determined their main food sources using the EFSA (European Food Safety Authority) Comprehensive European Food Consumption Database. Data for adults aged 18–64 years were available from fourteen European countries, and intake was determined using the FLAVIOLA Flavanol Food Composition Database, developed for the present study and based on the latest US Department of Agriculture and Phenol-Explorer databases. The mean habitual intake of flavan-3-ol monomers, theaflavins and PA ranged from 181 mg/d (Czech Republic) to 793 mg/d (Ireland). The highest intakes of flavan-3-ol monomers and theaflavins were observed in Ireland (191/505 mg/d) and the lowest intakes in Spain (24/9 mg/d). In contrast, the daily intake of PA was highest in Spain (175 mg/d) and lowest in The Netherlands (96 mg/d). Main sources were tea (62 %), pome fruits (11 %), berries (3 %) and cocoa products (3 %). Tea was the major single contributor to monomer intake (75 %), followed by pome fruits (6 %). Pome fruits were also the main source of PA (28 %). The present study provides important data on the population-based intake of flavanols in the EU and demonstrates that dietary intake amounts for flavan-3-ol monomers, PA and theaflavins vary significantly across European countries. The average habitual intake of flavan-3-ols is considerably below the amounts used in most dietary intervention studies.
Resumo:
Apolipoprotein E (APOE) genotype is believed to play an important role in cardiovascular risk. APOE4 carriers have been associated with higher blood lipid levels and a more pro-inflammatory state compared with APOE3/E3 individuals. Although dietary fat composition has been considered to modulate the inflammatory state in humans, very little is known about how APOE genotype can impact on this response. In a follow-up to the main SATgene study, we aimed to explore the effects of APOE genotype, as well as, dietary fat manipulation on ex vivo cytokine production. Blood samples were collected from a subset of SATgene participants (n = 52/88), prospectively recruited according to APOE genotype (n = 26 E3/E3 and n = 26 E3/E4) after low-fat (LF), high saturated fat (HSF) and HSF with 3.45 g docosahexaenoic acid (DHA) dietary periods (each diet eight weeks in duration assigned in the same order) for the measurement of ex vivo cytokine production using whole blood culture (WBC). Concentrations of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha were measured in WBC supernatant samples after stimulation for 24 h with either 0.05 or 1 lg/ml of bacterial lipopolysaccharide (LPS). Cytokine levels were not influenced by genotype, whereas, dietary fat manipulation had a significant impact on TNF-a and IL-10 production; TNF-a concentration was higher after consumption of the HSF diet compared with baseline and the LF diet (P < 0.05), whereas, IL-10 concentration was higher after the LF diet compared with baseline (P < 0.05). In conclusion, our study has revealed the amount and type of dietary fat can significantly modulate the production of TNF-a and IL-10 by ex vivo LPS-stimulated WBC samples obtained from normolipidaemic subjects.
Resumo:
Background: Stable-isotope ratios of carbon (13C/12C, expressed as δ13C) and nitrogen (15N/14N, or δ15N) have been proposed as potential nutritional biomarkers to distinguish between meat, fish, and plant-based foods. Objective: The objective was to investigate dietary correlates of δ13C and δ15N and examine the association of these biomarkers with incident type 2 diabetes in a prospective study. Design: Serum δ13C and δ15N (‰) were measured by using isotope ratio mass spectrometry in a case-cohort study (n = 476 diabetes cases; n = 718 subcohort) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk population-based cohort. We examined dietary (food-frequency questionnaire) correlates of δ13C and δ15N in the subcohort. HRs and 95% CIs were estimated by using Prentice-weighted Cox regression. Results: Mean (±SD) δ13C and δ15N were −22.8 ± 0.4‰ and 10.2 ± 0.4‰, respectively, and δ13C (r = 0.22) and δ15N (r = 0.20) were positively correlated (P < 0.001) with fish protein intake. Animal protein was not correlated with δ13C but was significantly correlated with δ15N (dairy protein: r = 0.11; meat protein: r = 0.09; terrestrial animal protein: r = 0.12, P ≤ 0.013). δ13C was inversely associated with diabetes in adjusted analyses (HR per tertile: 0.74; 95% CI: 0.65, 0.83; P-trend < 0.001], whereas δ15N was positively associated (HR: 1.23; 95% CI: 1.09, 1.38; P-trend = 0.001). Conclusions: The isotope ratios δ13C and δ15N may both serve as potential biomarkers of fish protein intake, whereas only δ15N may reflect broader animal-source protein intake in a European population. The inverse association of δ13C but a positive association of δ15N with incident diabetes should be interpreted in the light of knowledge of dietary intake and may assist in identifying dietary components that are associated with health risks and benefits.