977 resultados para DIELECTRIC REFLECTION GRATINGS
Resumo:
Fabrication of ultrathin polymer composite films with low dielectric constants has been demonstrated. Octa( aminophenyl) silsesquioxane (OAPS) was synthesized and assembled with poly( acrylic acid) (PAA) and poly( styrene sulfonate) (PSS) via a layer-by-layer electrostatic self-assembly technique to yield nanoporous ultrathin films. The OAPS was soluble in water at pH 3 or lower, and suitable pH conditions for the OAPS/PAA and OAPS/PSS assemblies were determined. The multilayer formation process was studied by contact angle analysis, X-ray photoelectron spectroscopy, atomic force microscopy, quartz crystal microgravimetry, UV-vis spectroscopy, and ellipsometry. The multilayer growth was found to be steady and uniform, and the analysis of the film surface revealed a rough topography due to OAPS aggregates. The incorporation of porous OAPS molecules into the thin films significantly lowered their dielectric constants. The OAPS/PAA multilayer thin film thus prepared exhibited a dielectric constant of 2.06 compared to 2.58 for pure PAA film. The OAPS/PAA multilayer film was heated to effect cross-linking between the OAPS and the PAA layers, and the transformation was verified by reflection-absorption Fourier transform infrared spectroscopy.
Resumo:
A multi-component substitution of Co and Ni was incorporated into ZnTiO3 to form pure hexagonal Zn1-x(Co1/2Ni1/2)xTiO(3) (x = 0,0.8,0.9,1.0) dielectric ceramic powders by a modified sol-gel route, following heat treatments at 600 degrees C for 3 h and at 800 degrees C for 6 h. Differential scanning calorimetry measurements revealed that the order of increasing thermal stability of solid solution compound Zn1-x(Co1/2Ni1/2)(x)TiO3 was ZnTiO3 (945 degrees C), Zn0.1Ni0.9TiO3 (1346 degrees C), Zn-0.1(Co1/2Ni1/2)(0.9)TiO3 (1390 degrees C), and Zn0.1Co0.9TiO3 (> 1400 degrees C). Both the dielectric constant and loss tangent reached a maximum at x = 0.8 and then decreased with solubility, x, and measurement frequency.
Resumo:
Ambient reflection of organic light-emitting diodes (OLEDs) is reduced by utilizing a multilayer low-reflection cathode. The low-reflection cathode structure consists of a semitransparent cathode layer, a transparent spacing layer and a high reflective layer. Metals with different optical properties, including silver (Ag) and samarium (Sm), are used as the semitransparent cathode layer, tris(8-quinolinolato) aluminium (Alq(3)) and aluminium (Al) are used as the spacing layer and high reflective layer, respectively. The incident ambient light could be reduced by the cathode structure via destructive optical interference. It is found that the Ag/Alq(3)/Al cathode shows a strong wavelength-dependent reflection. However, the Sm/Alq(3)/Al cathode demonstrates a low reflection in the whole visible range, and the resulting OLED shows a reduced luminous reflectance of 2.7% as compared to 81% for a control device with LiF/Al cathode. A further reduction to 0.9% is realized by replacing a multilayer of Alq(3)/Sm/Alq(3) for the single layer of Alq(3).
Resumo:
An organic thin-film transistor (OTFT) having a low-dielectric polymer layer between gate insulator and source/drain electrodes is investigated. Copper phthalocyanine (CuPc), a well-known organic semiconductor, is used as an active layer to test performance of the device. Compared with bottom-contact devices, leakage current is reduced by roughly one order of magnitude, and on-state current is enhanced by almost one order of magnitude. The performance of the device is almost the same as that of a top-contact device. The low-dielectric polymer may play two roles to improve OTFT performance. One is that this structure influences electric-field distribution between source/drain electrodes and semiconductor and enhances charge injection. The other is that the polymer influences growth behavior of CuPc thin films and enhances physical connection between source/drain electrodes and semiconductor channel. Advantages of the OTFT having bottom-contact structure make it useful for integrated plastic electronic devices.
Resumo:
The electrochemically deposited poly(o-phenylenediamine) film on a Pt electrode has been investigated utilizing in situ external reflection FTIR spectroelectrochemistry technique. The prepared ladder polymer film is found to be partially ring-opened. The dopant ClO4- is evidenced to orient in such a way that more than one oxygen atom attach to the charge sites of the polymer. This suggests that positive charges of oxidized polymer are partially delocalized over the whole chains. The proton movement observed during the oxidation reaction is associated with the solvated MeCN molecule. It is proposed that the proton diffusion, dissolvation and protonation of the film may be essential to the electrochemical reduction reaction of the film. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
A simple, convenient and versatile thin layer reflection Fourier transform IR microspectroelectrochemical (FTIRMSEC) cell has been described and characterized. Electrochemistry and in situ FTIR microspectroscopy were studied by using the hexacyanoferrate redox couple in aqueous sulphate solution, indicating that this type of cell is characteristic of both micro- or ultramicroelectrode and thin layer spectroelectrochemistry. Furthermore, the application of this FTIRMSEC cell to IR for characterization of the products of electrochemical reactions was carried out for the oxidation of (mesotetraphenylporphinato)manganese(III) perchlorate in dichloromethane + tetrabutylammonium perchlorate solution. Finally, the advantages and problems of this type of cell compared with a conventional optically transparent thin layer FTIR spectroelectrochemical cell were discussed.
Resumo:
By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth, M=N, P, As, Sb) crystals were calculated. The values calculated of dielectric constants agree with the experimental values.
Resumo:
We investigate the effective dielectric responses of graded spherical composites under an external uniform electric field by taking the dielectric function of spherical inclusion, epsilon(i) = cr(k) e(beta r), where r is the inner distance of a point inside the particle from the centre of the spherical particle in the coordination. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites and it is shown that the DEDA is in excellent agreement with the exact result.
Resumo:
The dielectric response of graded composites having general power-law-graded cylindrical inclusions under a uniform applied electric field is investigated. The dielectric profile of the cylindrical inclusions is modeled by the equation epsilon(i)(r)=c(b+r)(k) (where r is the radius of the cylindrical inclusions and c, b and k are parameters). Analytical solutions for the local electrical potentials are derived in terms of hypergeometric functions and the effective dielectric response of the graded composites is predicted in the dilute limit. Moreover, for a simple power-law dielectric profile epsilon(i)(r) = cr(k) and a linear dielectric profile epsilon(i)(r) = c(b + r), analytical expressions of the electrical potentials and the effective dielectric response are derived exactly from our results by taking the limits b -> 0 and k -> 1, respectively. For a higher concentration of inclusions, the effective dielectric response is estimated by an effective-medium approximation. In addition, we have discussed the effective response of graded cylindrical composites with a more complex dielectric profile of inclusion, epsilon(i)(r)=c(b+r)(k)e(beta r). (c) 2005 American Institute of Physics.
Resumo:
The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effective dielectric responses of linear composites with graded cylindrical particles are investigated under an external uniform electric field. As an example, with the Kummer function, we have obtained the analytical solutions of electric potentials of graded composites with a cylindrical inclusion particle of dielectric function profile epsilon(i) = cr(k)e(betar), where r is the inside distance of a point in cylindrical particle from the original point of cylindrical coordinates. In the dilute limit, the effective dielectric response is derived by means of the mean field method. For larger volume fraction, we have estimated the dielectric response of the graded composites with an effective medium approximation. Furthermore, from our results, we have discussed the effective responses of graded composites for power-law and exponential dielectric function profiles, respectively. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The perturbation method is developed to investigate the effective nonlinear dielectric response of Kerr composites when the external ac and dc electric field is applied. Under the external ac and dc electric field E-app=E-a(1+sin omegat), the effective coupling nonlinear response can be induced by the cubic nonlinearity of Kerr nonlinear materials at the zero frequency, the finite basic frequency omega, the second and the third harmonics, 2omega and 3omega, and so on. As an example, we have investigated the cylindrical inclusions randomly embedded in a host and derived the formulas of the effective nonlinear dielectric response at harmonics in dilute limit. For a higher concentration of inclusions, we have proposed a nonlinear effective-medium approximation by introducing the general effective nonlinear response. With the relationships between the effective nonlinear response at harmonics and the general effective nonlinear response, we have derived a set of formulas of the effective nonlinear dielectric responses at harmonics for a larger volume fraction. (C) 2004 American Institute of Physics.
Resumo:
The perturbation method is developed to deal with the effective nonlinear dielectric responses of weakly nonlinear graded composites, which consist of the graded inclusion with a linear dielectric function of spatial variables of inclusion material. For Kerr-like nonlinear graded composites, as an example in two dimensions, we have used the perturbation method to solve the boundary value problems of potentials, and studied the effective responses of nonlinear graded composites, where a cylindrical inclusion with linear dielectric function and nonlinear dielectric constant is randomly embedded in a homogeneous host with linear and nonlinear dielectric constants. For the exponential function and the power-law dielectric profiles of cylindrical inclusions, in the dilute limit, we have derived the formulae of effective nonlinear responses of both graded nonlinear composites.