890 resultados para Cyclic Element
Resumo:
Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrp1p is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using-functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrp1p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrp1p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.
Resumo:
This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.
Resumo:
This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.
Resumo:
In this work, the analysis of electroosmotic pumping mechanisms in microchannels is performed through the solution of Poisson-Boltzmann and Navier Stokes equations by the Finite Element Method. This approach is combined with a Newton-Raphson iterative scheme, allowing a full treatment of the non-linear Poisson-Boltzmann source term which is normally approximated by linearizations in other methods.
Resumo:
In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using velocity-pressure-vorticity and velocity-pressure-stress formulations, named u-p-ω) and u-p-τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is convenient for implementation by LSFEM. The main purposes of this work are the numerical computation of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier-Stokes equations in u-p-ω and u-p-τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate the numerical code and the preliminary results are presented and compared with available results from the literature. Copyright © 2005 by ABCM.
Resumo:
Purpose: The objective of this study was to verify the effect of cyclic compressive loading on the shear bond strength of an adhesive system following collagen removal. Materials and Methods: Sixty bovine teeth were divided into 4 groups based on the adhesive procedure used: groups 1 and 2 - etching with 35% phosphoric acid and application of the Single Bond adhesive system; groups 3 and 4 - after etching, a 10% sodium hypochlorite solution was applied for 1 min before the application of the adhesive. In all the specimens, a Z100 resin cylinder was built up over the bond area. Groups 2 and 4 were submitted to 500,000 cycles with a load of 100 N. Results: The mean values for the shear bond test (MPa) were: group 1: 7.37 ± 1.15; group 2: 5.72 ± 1.66; group 3: 5.95 ± 1.21; group 4: 3.66 ± 1.12. There was no difference between groups 1 and 2 (p > 0.01). Between groups 1 and 3, 2 and 4, and 3 and 4 there was a significant difference (p < 0.01). The majority of the specimens demonstrated an adhesive failure. Conclusion: The application of sodium hypochlorite on dentin decreased the values of shear bond strength, as did the load cycling in the group treated with sodium hypochlorite.
Resumo:
The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price. © 2007 American Institute of Physics.
Resumo:
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
Resumo:
About 99% of mechanical failures are consequence of the phenomena of fatigue, which consists on the progressive weakening of the resistant section of a mechanical component due to the growing of cracks caused by fluctuating loadings. A broad diversity of factors influences the fatigue life of a mechanical component, like the surface finishing, scale factors, among others, but none is as significantly as the presence of geometric severities. Stress concentrators are places where fatigue cracks have a greater probability to occur, and so on, the intuit of this work is to develop a consistent and trustfully methodology to determine the theoretical stress concentration factor of mechanical components. Copyright © 2007 SAE International.
Resumo:
Background: Data on stress distribution in tooth-restoration interface with different ceramic restorative materials are limited. The aim of this chapter was to assess the stress distribution in the interface of ceramic restorations with laminate veneer or full-coverage crown with two different materials (lithium dissilicate and densely sintered aluminum oxide) under different loading areas through finite element analysis. Materials and Methods: Six two-dimensional finite element models were fabricated with different restorations on natural tooth: laminate veneer (IPS Empress, IPS Empress Esthetic and Procera AllCeram) or full-coverage crown (IPS e.max Press and Procera AllCeram). Two different loading areas (L) (50N) were also determined: palatal surface at 45° in relation to the long axis of tooth (L1) and perpendicular to the incisal edge (L2). A model with higid natural tooth was used as control. von Mises equivalent stress (σ vM) and maximum principal stress (σ max) were obtained on Ansys software. Results: The presence of ceramic restoration increased σ vM and σ max in the adhesive interface, mainly for the aluminum oxide (Procera AllCeram system) restorations. The full-coverage crowns generated higher stress in the adhesive interface under L1 while the same result was observed for the laminate veneers under L2. Conclusions: Lithium dissilicate and densely sintered aluminum oxide restorations exhibit different behavior due to different mechanical properties and loading conditions. © 2011 Nova Science Publishers, Inc.
Resumo:
Objectives: The aim of this study was to analyze the stress distribution on dentin/adhesive interface (d/a) through a 3-D finite element analysis (FEA) varying the number and diameter of the dentin tubules orifice according to dentin depth, keeping hybrid layer (HL) thickness and TAǴs length constant. Materials and Methods: 3 models were built through the SolidWorks software: SD - specimen simulating superficial dentin (41 x 41 x 82 μm), with a 3 μm thick HL, a 17 μm length Tag, and 8 tubules with a 0.9 μm diameter restored with composite resin. MD - similar to M1 with 12 tubules with a 1.2 μm diameter, simulating medium dentin. DD - similar to M1 with 16 tubules with a 2.5 μm diameter, simulating deep dentin. Other two models were built in order to keep the diameter constant in 2.5 μm: MS - similar to SD with 8 tubules; and MM - similar to MD with 12 tubules. The boundary condition was applied to the base surface of each specimen. Tensile load (0.03N) was performed on the composite resin top surface. Stress field (maximum principal stress in tension - σMAX) was performed using Ansys Wokbench 10.0. Results: The peak of σMAX (MPa) were similar between SD (110) and MD (106), and higher for DD (134). The stress distribution pathway was similar for all models, starting from peritubular dentin to adhesive layer, intertubular dentin and hybrid layer. The peak of σMAX (MPa) for those structures was, respectively: 134 (DD), 56.9 (SD), 45.5 (DD), and 36.7 (MD). Conclusions: The number of dentin tubules had no influence in the σMAX at the dentin/adhesive interface. Peritubular and intertubular dentin showed higher stress with the bigger dentin tubules orifice condition. The σMAX in the hybrid layer and adhesive layer were going down from superficial dentin to deeper dentin. In a failure scenario, the hybrid layer in contact with peritubular dentin and adhesive layer is the first region for breaking the adhesion. © 2011 Nova Science Publishers, Inc.
Resumo:
Objectives: Based on a maxillary premolar restored with laminate veneer and using the 3-D finite element analysis (FEA) and mCT data, the aim of this study was to evaluate the influence of different types of buccal cusp reduction on the stress distribution in the porcelain laminate veneer and in the resin luting cement layer. Methods: Two 3-D FEA models (M) of a maxillary premolar were built from mCT data. The buccal cusp reduction followed two configurations: Mt-buccal cusp completely covered by porcelain laminate veneer; and Mp-buccal cusp partially covered by porcelain laminate veneer. The loading (150 N in 458) was performed on the top of the buccal cusp. The finite element software (Ansys Workbench 10.0) was used to obtain the maximum shear stress (σmax) and maximum principal stress (σmax). Results: The Mp showed reduced the stress (σmax) in porcelain laminate veneer (from-2.3 to 24.5 MPa) in comparison with Mt (from-5.3 to 27.4 MPa). The difference between the peak and lower stress values of σmax in Mp (-6.8 to 26.7 MPa) and Mt (-5.3 to 27.4 MPa) was similar for the resin luting cement layer. The structures not exceeded the ultimate tensile strength or the shear bond strength. Conclusions: Cusp reduction did not affect significant increase in σmax and τmax. The Mt showed better stress distribution (τmax) than Mp. © 2011 Published by Elsevier Ireland on behalf of Japan Prosthodontic Society.
Resumo:
A simple method to determine Cu, Fe, Mn and Zn in single aliquots of medicinal plants by HR-CS FAAS is proposed. The main lines for Cu, Mn and Zn, and the alternate line measured at the wing of the main line for Fe at 248.327 nm allowed calibration within the 0.025 - 2.0 mg L-1 Cu, 1.0 - 20.0 mg L-1 Fe, 0.05 - 2.0 mg L-1 Mn, 0.025 - 0.75 mg L-1 Zn ranges. Nineteen medicinal plants and two certified plant reference materials were analyzed. Results were in agreement at a 95% confidence level (paired t-test) with reference values. Limits of detection were 0.12 μg L-1 Cu, 330 μg L-1 Fe, 1.42 μg L-1 Mn and 8.12 μg L-1 Zn. Relative standard deviations (n=12) were ≤ 3% for all analytes. Recoveries in the 89 - 105% (Cu), 95 - 108% (Fe), 94 - 107% (Mn), and 93 - 110% (Zn) ranges were obtained.
Resumo:
Chromosome mapping and studies of the genomic organization of repetitive DNA sequences provide valuable insights that enhance our evolutionary and structural understanding of these sequences, as well as identifying chromosomal rearrangements and sex determination. This study investigated the occurrence and organization of repetitive DNA sequences in Leporinus elongatus using restriction enzyme digestion and the mapping of sequences by chromosomal fluorescence in situ hybridization (FISH). A 378-bp fragment with a 54.2% GC content was isolated after digestion with the SmaI restriction enzyme. BLASTN search found no similarity with previously described sequences, so this repetitive sequence was named LeSmaI. FISH experiments were conducted using L. elongatus and other Anostomidae species, i.e. L. macrocephalus,L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii, S. isognathus, and Abramites hypselonotus which detected signals that were unique to male and female L. elongatus individuals. Double-FISH using LeSmaI and 18S rDNA showed that LeSmaI was located in a nucleolus organizer region (NOR) in the male and female metaphases of L. elongatus. This report also discusses the role of repetitive DNA associated with NORs in the diversification of Anostomidae species karyotypes. Copyright © 2012 S. Karger AG, Basel.