995 resultados para Current sensors
Resumo:
The most common reason for a low-voltage induction motor breakdown is a bearing failure. Along with the increasing popularity of modern frequency converters, bearing failures have become the most important motor fault type. Conditions in which bearing currents are likely to occur are generated as a side effect of fast du/dt switching transients. Once present, different types of bearing currents can accelerate the mechanical wear of bearings by causing deformation of metal parts in the bearing and degradation of the lubricating oil properties.The bearing current phenomena are well known, and several bearing current measurement and mitigation methods have been proposed. Nevertheless, in order to develop more feasible methods to measure and mitigate bearing currents, better knowledge of the phenomena is required. When mechanical wear is caused by bearing currents, the resulting aging impact has to be monitored and dealt with. Moreover, because of the stepwise aging mechanism, periodically executed condition monitoring measurements have been found ineffective. Thus, there is a need for feasible bearing current measurement methods that can be applied in parallel with the normal operation of series production drive systems. In order to reach the objectives of feasibility and applicability, nonintrusive measurement methods are preferred. In this doctoral dissertation, the characteristics and conditions of bearings that are related to the occurrence of different kinds of bearing currents are studied. Further, the study introduces some nonintrusive radio-frequency-signal-based approaches to detect and measure parameters that are associated with the accelerated bearing wear caused by bearing currents.
Resumo:
Infarct-induced heart failure is usually associated with cardiac hypertrophy and decreased ß-adrenergic responsiveness. However, conflicting results have been reported concerning the density of L-type calcium current (I Ca(L)), and the mechanisms underlying the decreased ß-adrenergic inotropic response. We determined I Ca(L) density, cytoplasmic calcium ([Ca2+]i) transients, and the effects of ß-adrenergic stimulation (isoproterenol) in a model of postinfarction heart failure in rats. Left ventricular myocytes were obtained by enzymatic digestion 8-10 weeks after infarction. Electrophysiological recordings were obtained using the patch-clamp technique. [Ca2+]i transients were investigated via fura-2 fluorescence. ß-Adrenergic receptor density was determined by [³H]-dihydroalprenolol binding to left ventricle homogenates. Postinfarction myocytes showed a significant 25% reduction in mean I Ca(L) density (5.7 ± 0.28 vs 7.6 ± 0.32 pA/pF) and a 19% reduction in mean peak [Ca2+]i transients (0.13 ± 0.007 vs 0.16 ± 0.009) compared to sham myocytes. The isoproterenol-stimulated increase in I Ca(L) was significantly smaller in postinfarction myocytes (Emax: 63.6 ± 4.3 vs 123.3 ± 0.9% in sham myocytes), but EC50 was not altered. The isoproterenol-stimulated peak amplitude of [Ca2+]i transients was also blunted in postinfarction myocytes. Adenylate cyclase activation through forskolin produced similar I Ca(L) increases in both groups. ß-Adrenergic receptor density was significantly reduced in homogenates from infarcted hearts (Bmax: 93.89 ± 20.22 vs 271.5 ± 31.43 fmol/mg protein in sham myocytes), while Kd values were similar. We conclude that postinfarction myocytes from large infarcts display reduced I Ca(L) density and peak [Ca2+]i transients. The response to ß-adrenergic stimulation was also reduced and was probably related to ß-adrenergic receptor down-regulation and not to changes in adenylate cyclase activity.
Resumo:
Autologous and allogeneic bone marrow transplantation (BMT) recipients lose immune memory of exposure to infectious agents and vaccines accumulated through a lifetime and therefore need to be revaccinated. Diphtheria toxoid, tetanus toxoid, pertussis vaccine (children <7 years old), Haemophilus influenzae type b conjugate, 23-valent pneumococcal polysaccharide, inactivated influenza vaccine, inactivated polio vaccine and live-attenuated measles-mumps-rubella vaccine are the currently recommended vaccines to be included in a vaccination program after BMT. For most of them, the best time to vaccinate, the number of vaccine doses and/or the duration of immunity after vaccination have not been established. Vaccination protocols vary greatly among BMT centers, suggesting that the lack of sufficient data has not permitted the formulation of reliable recommendations. The use of other vaccines and the perspectives for different vaccination protocols are analyzed in this review.
Resumo:
T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16). The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15), and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9). The 8-mV shift in the activation mid-point was statistically significant (P < 0.05). The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1) and a1I (CaV3.3) T-type Ca2+ channel mRNA transcripts.
Resumo:
Various categories of food packaging indicators namely; VTT, Ageless Eye, Mocon, Åbo Akademi and Impak were selected and incorporated into food trays manufactured at LUT packaging laboratory. Each of these food packaging indicators was used to investigate (visually and qualitatively) the transmission of oxygen through the seal, and tray material, as well as to detect microbial activity within the content of the package. Applications of different methods of gas flushing, content variation and introduction of two distinct levels of oxygen scavengers were employed as treatments to evaluate the packaging performance of the food packaging indicators. Ease of handling of each food packaging indicator was also taken into considerations. Findings showed that for packages, which contained chicken product, the amount of oxygen in the package, measured immediately after the sealing operation on the first day gradually decreased to zero percent by the third day of the storage period. The oxygen level remained at this point throughout the duration of storage for the chicken packages. Besides, level of oxygen in the packages without product continued to increase with the storage time, at moderate rate of 0.1% for 100%N2 and 0.3% for 30%CO2/70%N2 empty packages. More carbon dioxide gas was recorded for packages flushed with 30%CO2/70%N2. Results also revealed that visual analysis of one of the color indicators for example Ageless Eye, conformed to the data derived from the luminescence food-packaging indicator. This shows that packaging operation of the packaging line was considerably stable, and efficient with negligible exception. However, it was found that most of the food packaging indicators investigated in this research study exhibited considerable packaging challenges, such as, reaction with the content of the package (Impak); over sensitivity (Åbo Akademi and Impak); ease of handling problem (Åbo Akademi); and ease of activation problem (VTT indicators). In this study, the strengths and limitations of different indicators were analyzed. This study demonstrates the applicability of various indicators in MAP using chicken package application.
Resumo:
Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.
Resumo:
Potentiometric sensors are very attractive tools for chemical analysis because of their simplicity, low power consumption and low cost. They are extensively used in clinical diagnostics and in environmental monitoring. Modern applications of both fields require improvements in the conventional construction and in the performance of the potentiometric sensors, as the trends are towards portable, on-site diagnostics and autonomous sensing in remote locations. The aim of this PhD work was to improve some of the sensor properties that currently hamper the implementation of the potentiometric sensors in modern applications. The first part of the work was concentrated on the development of a solid-state reference electrode (RE) compatible with already existing solid-contact ion-selective electrodes (ISE), both of which are needed for all-solid-state potentiometric sensing systems. A poly(vinyl chloride) membrane doped with a moderately lipophilic salt, tetrabutylammonium-tetrabutylborate (TBA-TBB), was found to show a satisfactory stability of potential in sample solutions with different concentrations. Its response time was nevertheless slow, as it required several minutes to reach the equilibrium. The TBA-TBB membrane RE worked well together with solid-state ISEs in several different situations and on different substrates enabling a miniature design. Solid contacts (SC) that mediate the ion-to-electron transduction are crucial components of well-functioning potentiometric sensors. This transduction process converting the ionic conduction of an ion-selective membrane to the electronic conduction in the circuit was studied with the help of electrochemical impedance spectroscopy (EIS). The solid contacts studied were (i) the conducting polymer (CP) poly(3,4-ethylienedioxythiophene) (PEDOT) and (ii) a carbon cloth having a high surface area. The PEDOT films were doped with a large immobile anion poly(styrene sulfonate) (PSS-) or with a small mobile anion Cl-. As could be expected, the studied PEDOT solid-contact mediated the ion-toelectron transduction more efficiently than the bare glassy carbon substrate, onto which they were electropolymerized, while the impedance of the PEDOT films depended on the mobility of the doping ion and on the ions in the electrolyte. The carbon cloth was found to be an even more effective ion-to-electron transducer than the PEDOT films and it also proved to work as a combined electrical conductor and solid contact when covered with an ion-selective membrane or with a TBA-TBB-based reference membrane. The last part of the work was focused on improving the reproducibility and the potential stability of the SC-ISEs, a problem that culminates to the stability of the standard potential E°. It was proven that the E° of a SC-ISE with a conducting polymer as a solid contact could be adjusted by reducing or oxidizing the CP solid contact by applying current pulses or a potential to it, as the redox state of the CP solid-contact influences the overall potential of the ISE. The slope and thus the analytical performance of the SC-ISEs were retained despite the adjustment of the E°. The shortcircuiting of the SC-ISE with a conventional large-capacitance RE was found to be a feasible instrument-free method to control the E°. With this method, the driving force for the oxidation/reduction of the CP was the potential difference between the RE and the SC-ISE, and the position of the adjusted potential could be controlled by choosing a suitable concentration for the short-circuiting electrolyte. The piece-to-piece reproducibility of the adjusted potential was promising, and the day-today reproducibility for a specific sensor was excellent. The instrumentfree approach to control the E° is very attractive considering practical applications.
Resumo:
The association between socioeconomic position (SEP) and serum lipids has been little studied and the results have been controversial. A total of 2063 young adults born in 1978/79 were evaluated at 23-25 years of age in the fourth follow-up of a cohort study carried out in Ribeirão Preto, SP, Brazil, corresponding to 31.8% of the original sample. Total serum cholesterol (TC), triglycerides, high-density cholesterol (HDL cholesterol) and low-density cholesterol (LDL cholesterol) were analyzed according to SEP at birth and during young adulthood. SEP was classified into tertiles of family income and a cumulative score of socioeconomic disadvantage was created. TC was 11.85 mg/100 mL lower among men of lower SEP in childhood (P < 0.01) but no difference was found in women, whereas it was 8.46 lower among men (P < 0.01) and 8.21 lower among women of lower SEP in adulthood (P < 0.05). Individuals of lower SEP had lower LDL and HDL cholesterol, with small differences between sexes and between the two times in life. There was no association between SEP and triglyceride levels. After adjustment of income at one time point in relation to the other, some associations lost significance. The greater the socioeconomic disadvantage accumulated along life, the lower the levels of TC, LDL and HDL cholesterol (P < 0.05). The socioeconomic gradient of TC and LDL cholesterol was inverse, representing a lower cardiovascular risk for individuals of lower SEP, while the socioeconomic gradient of HDL cholesterol indicated a lower cardiovascular risk for individuals of higher SEP.
Resumo:
This paper introduces an important source of torque ripple in PMSMs with tooth-coil windings (TC-PMSMs). It is theoretically proven that saturation and cross-saturation phenomena caused by the non-synchronous harmonics of the stator current linkage cause a synchronous inductance variation with a particular periodicity. This, in turn, determines the magnitude of the torque ripple and can also deteriorate the performance of signal-injection-based rotor position estimation algorithms. An improved dq- inductance model is proposed. It can be used in torque ripple reduction control schemes and can enhance the self-sensing capabilities of TC-PMSMs
Resumo:
A major problem in renal transplantation is identifying a grading system that can predict long-term graft survival. The present study determined the extent to which the two existing grading systems (Banff 97 and chronic allograft damage index, CADI) correlate with each other and with graft loss. A total of 161 transplant patient biopsies with chronic allograft nephropathy (CAN) were studied. The samples were coded and evaluated blindly by two pathologists using the two grading systems. Logistic regression analyses were used to evaluate the best predictor index for renal allograft loss. Patients with higher Banff 97 and CADI scores had higher rates of graft loss. Moreover, these measures also correlated with worse renal function and higher proteinuria levels at the time of CAN diagnosis. Logistic regression analyses showed that the use of angiotensin-converting enzyme inhibitor (ACEI), hepatitis C virus (HCV), tubular atrophy, and the use of mycophenolate mofetil (MMF) were associated with graft loss in the CADI, while the use of ACEI, HCV, moderate interstitial fibrosis and tubular atrophy and the use of MMF were associated in the Banff 97 index. Although Banff 97 and CADI analyze different parameters in different renal compartments, only some isolated parameters correlated with graft loss. This suggests that we need to review the CAN grading systems in order to devise a system that includes all parameters able to predict long-term graft survival, including chronic glomerulopathy, glomerular sclerosis, vascular changes, and severity of chronic interstitial fibrosis and tubular atrophy.
Resumo:
Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (Ito) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM + TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg-1·day-1). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of Ito was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated Ito reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced Ito of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM.
Resumo:
Patients with clinical diseases often present psychiatric conditions whose pharmacological treatment is hampered due to hazardous interactions with the clinical treatment and/or disease. This is particularly relevant for major depressive disorder, the most common psychiatric disorder in the general hospital. In this context, nonpharmacological interventions could be useful therapies; and, among those, noninvasive brain stimulation (NIBS) might be an interesting option. The main methods of NIBS are repetitive transcranial magnetic stimulation (rTMS), which was recently approved as a nonresearch treatment for some psychiatric conditions, and transcranial direct current stimulation (tDCS), a technique that is currently limited to research scenarios but has shown promising results. Therefore, our aim was to review the main medical conditions associated with high depression rates, the main obstacles for depression treatment, and whether these therapies could be a useful intervention for such conditions. We found that depression is an important and prevalent comorbidity in a variety of diseases such as epilepsy, stroke, Parkinson's disease, myocardial infarction, cancer, and in other conditions such as pregnancy and in patients without enteral access. We found that treatment of depression is often suboptimal within the above contexts and that rTMS and tDCS therapies have been insufficiently appraised. We discuss whether rTMS and tDCS could have a significant impact in treating depression that develops within a clinical context, considering its unique characteristics such as the absence of pharmacological interactions, the use of a nonenteral route, and as an augmentation therapy for antidepressants.
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.
Resumo:
Ontology matching is an important task when data from multiple data sources is integrated. Problems of ontology matching have been studied widely in the researchliterature and many different solutions and approaches have been proposed alsoin commercial software tools. In this survey, well-known approaches of ontologymatching, and its subtype schema matching, are reviewed and compared. The aimof this report is to summarize the knowledge about the state-of-the-art solutionsfrom the research literature, discuss how the methods work on different application domains, and analyze pros and cons of different open source and academic tools inthe commercial world.
Resumo:
This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.