932 resultados para Culture Media, Conditioned -- pharmacology
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a dose-dependent, persistent stimulation of the enzymes choline acetyltransferase (ChAT), glutamic acid decarboxylase and glutamine synthetase. After elimination of the proliferating cells by treatment of the cultures with Ara-C (0.4 microM) only the cholinergic marker enzyme, ChAT, could be stimulated by tumor promoters. The non-promoting phorbol ester, 4 alpha-phorbol 12,13-didecanoate proved to be inactive in these cultures, whereas the potent non-phorbol tumor promoter, mezerein, produced an even greater stimulatory effect than PMA. Since PMA and mezerein are potent and specific activators of protein kinase C, the present results suggest a role for this second messenger in the development of cholinergic telencephalon neurons. Stimulation of ChAT required prolonged exposure (48 h) of the cultures to PMA and the responsiveness of the cholinergic neurons to the tumor promoters decreased with progressive cellular maturation. The cholinergic telencephalon neurons showed the same pattern of responsiveness for tumor promoters as for nerve growth factor (NGF). However, the combined treatment with NGF and either PMA or mezerein produced an additive stimulatory effect, suggesting somewhat different mechanisms of action.
Resumo:
The synthesis of poly(RboP), the main Bacillus subtilis W23 teichoic acid, is encoded by tarDF-tarABIJKL operons, the latter being controlled by two promoters designated PtarA-int and PtarA-ext. Analysis by lacZ fusions reveals that PtarA-int activity exhibits sharp increases at the beginning and end of the transition between exponential and stationary growth phase. As confirmed by mRNA quantification, these increases are mediated by ECF sigma factors sigmaX and sigmaM respectively. In liquid media, strain W23 sigX sigM double mutants experience serious difficulties in the transition and stationary growth phases. Inactivation of sigmaX- and sigmaM-controlled regulons, which precludes transcription from PtarA-int, leads to (i) delays in chromosome segregation and septation and (ii) a transient loss of up to 30% of the culture OD or lysis. However, specific inactivation of PtarA-int, leading mainly to a shortage of poly(RboP), does not affect growth while, nevertheless, interfering with normal septation, as revealed by electron microscopy. The different sigM transcription in strains W23 and 168 is discussed. In W23, expression of tarA and sigM, which is shown to control divIC, is inversely correlated with growth rate, suggesting that the sigM regulon is involved in the control of cell division.
Resumo:
The effects of subchronical applications of the mycotoxin Fumonisin B1 (FB1) were analyzed in vitro, using aggregating cell cultures of fetal rat telencephalon as a model. As cells in the aggregates developed from an immature state to a highly differentiated state, with synapse and compact myelin formation, it was possible to study the effects of FB1 at different developmental stages. The results showed that FB1 did not cause cell loss and it had no effects on neurons. However it decreased strongly the total content of myelin basic protein, the main constituent of the myelin sheath, during the myelination period (DIV 18-28). The loss of myelin was not accompanied by a loss of oligodendrocytes, the myelinating cells. However FB1 had effects on the maturation of oligodendrocytes, as revealed by a decrease in the expression of galactocerebroside, and on the compaction of myelin, as shown by a reduction of the expression of the mnyelin/oligodendrocyte glycoprotein MOG. The content of the cytoskeletal component glial fibrillary acidic protein (GFAP) was decreased in differentiated astrocytes, exclusively, while neurons were not affected by 40 microM of FB1 applied continuously for 10 days. In summary, FB1 selectively affected glial cells. In particular, FB1 delayed oligodendrocyte development and impaired myelin formation and deposition.
Resumo:
Maturation of astrocytes, neurons, and oligodendrocytes was studied in serum-free aggregating cell cultures of fetal rat telencephalon by an immunocytochemical approach. Cell type-specific immunofluorescence staining was examined by using antibodies directed against glial fibrillary acidic protein (GFAP) and vimentin, two astroglial markers; neuron-specific enolase (NSE) and neurofilament (NF), two neuronal markers, and galactocerebroside (GC), an oligodendroglial marker. It was found that the cellular maturation in aggregates is characterized by distinct developmental increases in immunoreactivity for GFAP, vimentin, NSE, NF, and GC, and by a subsequent decrease of vimentin-positive structures in more differentiated cultures. These findings are in agreement with observations in vivo, and they corroborate previous biochemical studies of this histotypic culture system. Treatment of very immature cultures with a low dose of epidermal growth factor (EGF, 5 ng/ml) enhanced the developmental increase in GFAP, NSE, NF and GC immunoreactivity, suggesting an acceleration of neuronal and glial maturation. In addition, EGF was found to alter the cellular organization within the aggregates, presumably by influencing cell migration.
Resumo:
The aim of the present study was to assess the possible use of a modified medium, prepared in the laboratory using the constituents of Barbour-Stonner-Kelly (BSK) medium and medium 199 as base, for the culture of Borrelia strains, comparing the growth of individual strains in this medium and in the BSK-H medium, and the protein profile and antigenic characteristics of Borrelia proteins expressed in these media. A qualitative evaluation of growth of Borrelia species was made with acceptable results (morphology and motility), but during a quantitative evaluation using the three main genospecies of Borrelia, the better results were obtained with a B. burgdorferi sensu stricto strain. The modified medium did not enable the growth of a B. afzelii strain. The protein profile and antigenic characteristic of the expressed proteins in the modified medium were studied with satisfactory results. These results suggest the modified medium as an alternative for the cultivation of Borrelia strains, with some limitations, in poorly-resourced laboratories.
Resumo:
Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.
Resumo:
In order to study peptide growth factor action in a three-dimensional cellular environment, aggregating cell cultures prepared from 15-day fetal rat telencephalon were grown in a chemically defined medium and treated during an early developmental stage with either bovine fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF homodimers AA and BB). A single dose (5-50 ng/ml) of either growth factor given to the cultures on day 3 greatly enhanced the developmental increase of the two glia-specific enzyme activities, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and glutamine synthetase (GS), whereas it had relatively little effect on total protein and DNA content. Distinct patterns of dose-dependency were found for CNP and GS stimulation. At low concentrations of bFGF (0.5-5 ng/ml) and at all PDGF concentrations applied, the oligodendroglial marker enzyme CNP was the most affected. A relatively small but significant mitogenic effect was observed after treatment with PDGF, particularly at higher concentrations or after repetitive stimulation. The two PDGF homodimers AA and BB were similar in their biological effects and potency. The present results show that under histotypic conditions both growth factors, bFGF and PDGF, promote the maturation rather than the proliferation of immature oligodendrocytes and astrocytes.
Resumo:
In this paper we want to present a work- in-progress research about video self production on the Internet that is part of a broader research project which explores the ways current media practices convey a 'playful' relationship with digital technologies in popular culture.
Resumo:
Aggregating brain cell cultures at an advanced maturational stage (20-21 days in vitro) were subjected for 1-3 h to anaerobic (hypoxic) and/or stationary (ischemic) conditions. After restoration of the normal culture conditions, cell loss was estimated by measuring the release of lactate dehydrogenase as well as the irreversible decrease of cell type-specific enzyme activities, total protein and DNA content. Ischemia for 2 h induced significant neuronal cell death. Hypoxia combined with ischemia affected both neuronal and glial cells to different degrees (GABAergic neurons>cholinergic neurons>astrocytes). Hypoxic and ischemic conditions greatly stimulated the uptake of 2-deoxy-D-glucose, indicating increased glucose consumption. Furthermore, glucose restriction (5.5 mM instead of 25 mM) dramatically increased the susceptibility of neuronal and glial cells to hypoxic and ischemic conditions. Glucose media concentrations below 2 mM caused selective neuronal cell death in otherwise normal culture conditions. GABAergic neurons showed a particularly high sensitivity to glucose restriction, hypoxia, and ischemia. The pattern of ischemia-induced changes in vitro showed many similarities to in vivo findings, suggesting that aggregating brain cell cultures provide a useful in vitro model to study pathogenic mechanisms related to brain ischemia.
Resumo:
Bovine growth hormone (bGH) and epidermal growth factor (EGF) increased the activity of ornithine decarboxylase (ODC) in brain cell aggregates cultured in a serum-free chemically defined medium. ODC is considered as a marker of cell growth and differentiation. The effect of bGH and EGF on myelination was investigated by measuring two myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP). EGF treatment at days 2 and 5 caused a dose-dependent increase of both myelin markers at culture day 12. This increase could still be observed at culture day 19, indicating a prolonged action of EGF. The continual presence of bGH in the culture medium produced a large accumulation of MBP at day 19. This effect was dose-dependent and required the presence of triiodothyronine (T3). In contrast, the effect of bGH on CNP activity did not require the presence of T3. This is the first report showing a direct effect of bGH on CNS myelination in vitro and of EGF on both MBP accumulation and ODC activity.
Resumo:
The production of extracellular soluble proteins was studied in serum-free aggregating cell cultures of fetal rat telencephalon labeled on culture day 7 with a mixture of radioactive amino acid precursors. Cultures treated continuously with epidermal growth factor (EGF; 20 ng/ml) showed a generally increased protein secretion and a particularly enhanced production of a few distinct extracellular proteins. The time lag of this response after an initial dose of EGF (25 ng/ml) on day 7 was 48 h. The total macromolecular radioactivity that accumulated within 96 h of labeling in the media of EGF-treated cultures was 175% of untreated controls, whereas no difference was found in the proportions of intracellular amino acid incorporation. Cultures which received a single dose of EGF (25 ng/ml) on day 1 showed still a greatly increased protein secretion on day 7. Prevention of extracellular protein accumulation by reducing the initial cell number and increasing the rate of media changes did not affect the EGF-induced stimulation of the two glial enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase. The results suggest that both the increased production of extracellular proteins and the enhanced development of glial enzymatic activities reflect the stimulated phenotypic expression of EGF-sensitive brain cells.
Resumo:
Résumé Objectif : L'hyperplasie intimale est un processus de remodelage vasculaire qui apparaît après une lésion vasculaire. Les mécanismes impliqués dans l'hyperplasie intimale sont la prolifération, la dédifférentiation et la migration des cellules musculaires lisses depuis la média vers l'espace sous-intimal. Nous avons émis l'hypothèse que les jonctions communicantes de type gap, qui coordonnent certains processus physiologiques tels que la croissance et la différentiation cellulaire, pouvaient participer au développement de l'hyperplasie intimale. Méthodes : Des segments de veines saphènes humaines prélevées chirurgicalement lors de pontages, ont été ouverts longitudinalement avec la surface luminale placée vers le haut et maintenus en culture pendant 14 jours. Des fragments veineux ont été préparés pour une évaluation histologique, pour des mesures de l'épaisseur de la néointima, et pour des analyses immunocytochimiques de l'ARN messager ainsi que des protéines. Résultats : Parmi les 4 connexines (Cxs 37, 40, 43 et 45) qui forment les jonctions communicantes dans les veines, nous avons focalisé notre étude sur l'expression des Cxs 43 et 40; nous avons démontré que la Cx43 est exprimée dans les cellules musculaires lisses et les cellules endothéliales alors que la Cx40 est uniquement présente dans l'endothélium. Après 14 jours en culture, des analyses histomorphométriques ont montré une augmentation significative de l'épaisseur de l'intima démontrant la présence d'hyperplasie intimale. Une analyse temporelle a révélé une augmentation progressive de la Cx43 jusqu'à une augmentation maximale de six à huit fois au niveau de l'ARN messager et des protéines après 14 jours en culture. Au contraire, l'expression de la Cx40 n'était pas modifiée. Des analyses par immunofluorescence ont montré également une augmentation de la Cx43 dans les membranes des cellules musculaires lisses de la média. Le développement de l'hyperplasie intimale in vitro est diminué en présence de fluvastatin et cette diminution est associée à une réduction de l'expression de la Cx43. Conclusions : Ces données démontrent que la Cx43 est augmentée in vitro pendant le processus d'hyperplasie intimale et que la fluvastatin prévient cette induction. Ces résultats suggèrent un rôle crucial joué par la communication intercellulaire impliquant la Cx43 dans la veine humaine durant le développement de l'hyperplasie intimale. Abstract Objective: Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. Methods: Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. Results: Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. Afrer 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. Atime-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. Conclusions: These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. (J Vasc Surg 2005;41:1043-52.)
Resumo:
Supernatants from cell cultures (also called conditioned media, CMs) are commonly analyzed to study the pool of secreted proteins (secretome). To reduce the exogenous protein background, serum-free media are often used to obtain CMs. Serum deprivation, however, can severely affect cell viability and phenotype, including protein secretion. We present a strategy to analyze the proteins secreted by cells in fetal bovine serum-containing CMs, which combines the advantage of metabolic labeling and protein concentration linearization techniques. Incubation of CMs with a hexapeptide ligand library was used to reduce the dynamic range of the samples and led to the identification of 3 times more proteins than in untreated CM samples. Labeling with a deuterated amino acid was used to distinguish between cellular proteins and homologous bovine proteins contained in the medium. Application of the strategy to two breast cancer cell lines led to the identification of proteins secreted in different amounts and which could correlate with their varying degree of aggressiveness. Selected reaction monitoring (SRM)-based quantitation of three proteins of interest in the crude samples yielded data in good agreement with the results from concentration-equalized samples.