936 resultados para Coral reef animals
Resumo:
The abundance patterns of tunicate spicules are documented for the Pliocene-Pleistocene sediments at seven sites along the Great Barrier Reef-Queensland Plateau transect. The spatial distribution pattern indicates that tunicate spicules were limited to waters shallower than 900 m. The occurrences of tunicate spicules at Sites 822 and 823 that are deeper than 900 m are ascribed to downslope transport, and their distribution patterns can be used to monitor downslope transport processes. The first common occurrence of tunicate spicules at Sites 822 and 823 around 1.6 Ma may suggest the initiation of the central Great Barrier Reef at this time. The morphology of tunicate spicules varies greatly and appears to be gradational among different forms. Older tunicate assemblages are less diverse than those in younger sediments, presumably because of diagenesis. Tunicate spicules do not appear to be a promising biostratigraphic tool for the Pliocene-Pleistocene.
Resumo:
Upper Quaternary sediment sequences east of the Great Barrier Reef are characterized by alternating siliciclastic- and carbonate-rich horizons caused by changes in the input of various sedimentary components and reflected in cores by variations in bulk carbonate content. A total of 153 measurements of bulk carbonate content were determined using the carbonate-bomb technique for late Pleistocene sediments between 0 and 23.69 meters below sea floor (mbsf) in Ocean Drilling Program Hole 1198A. Average sample resolution was 15 cm and multiple analyses were performed on each sample. Bulk carbonate content ranges from a maximum of 94 wt% at 13.63 mbsf to a minimum of 73 wt% at 14.54 mbsf. Five cyclic trends are observed that may relate to five major glacial events during the last 500 k.y. of the Quaternary.
Resumo:
The derivation of a detailed sea-surface paleotemperature curve for the middle Miocene-Holocene (10-0 Ma) from ODP Site 811 on the Queensland Plateau, northeast Australia, has clarified the role of sea-surface temperature fluctuations as a control on the initiation and development of the extensive carbonate platforms of this region. This curve was derived from isotopic analyses of the planktonic foraminifer Globigerinoides ruber, and converted to temperature using the surface-water paleotemperature equation accounting for variations in global ice volume. The accuracy of these data were confirmed by derivation of paleotemperatures using the water column isotopic gradient (Delta delta18O), corrected for salinity and variations in seafloor water mass temperature. Results indicate that during this period surface-water temperatures were, on average, greater than the minimum required for tropical reef growth (20°C; Veron, 1986), with the exception of the late Miocene and earliest early Pliocene (10-4.9 Ma), when there were repeated intervals of temperatures between 18-20°C. Tropical reef growth on the Queensland Plateau was extensive from the early to early middle Miocene (~21-13 Ma), after which reef development began to decline. A lowstand near 11 Ma probably exposed shallower portions of the plateau; after re-immersion near 7 Ma, the areal extent of reef development was greatly reduced (~ 50%). Paleotemperature data from Site 811 indicate that decreased sea-surface temperatures were likely to have been instrumental in reducing the area of active reef growth on the Queensland Plateau. Reduced reefal growth rates continued until the late Pliocene or Quaternary, despite the increase of average sea-surface paleotemperatures to 22-23°C. Studies on modern corals show that when sea-surface temperatures are below ~24°C, as they were from the late Miocene to the Pleistocene off northeast Australia, corals are stressed and growth rates are greatly reduced. Consequently, when temperatures are in this range, corals have difficulty keeping pace with subsidence and changing environmental factors. In the late Pliocene, sedimentation rates increased due to increases in non-reefal carbonate production and falling sea levels. It was not until the mid-Quaternary (0.6-0.7 Ma) that sea-surface paleotemperatures increased above 24°C as a result of the formation of a western Coral Sea warm water pool. Because of age discrepancies, it is unclear exactly when an effective barrier developed on the central Great Barrier Reef; the formation of the warm water pool was likely to have either assisted the formation of this barrier and/or permitted increased coral growth rates. Fluctuations in sea-surface temperature can account for much of the observed spatial and temporal variations of reef growth and carbonate platform distribution off northeast Australia, and therefore we conclude that paleotemperature variations are a critical control on the development of carbonate platforms, and must be considered an important cause of ancient platform "drowning".
Resumo:
Twelve Late Quaternary TIMS U-Th ages are reported here from 10 coral samples collected in situ from five transgressive coral/algal raised reefs (height: max. 113 m, min. 8 m) and two raised lagoonal deposits (height: max. 18 m, min. 8 m) along and near the west coast of Tanna, which lies in the Median Sedimentary Basin of South Vanuatu, southwest Pacific. These reefs and raised lagoonal deposits represent several age groups: (i) 215 ka (marine oxygen-isotope stage 7) penultimate interglacial (highest elevation and oldest); (ii) one lagoonal deposit of ca 127 ka (marine oxygen-isotope stage 5e); (iii) three last interglacial reefs with ages 102, 89 and 81 ka (representing marine oxygen-isotope stages 5c, 5b and 5a, respectively, of the latter part of the last interglacial); (iv) a lagoonal deposit with a 92 ka age (5b); and (v) a Holocene reef (age >5.7-5.0 ka) (lowest elevation and youngest). A ca 4.9 ka regressive reef (at elevation of 1.5 m above sea-level) is consistent with an island-wide 6.5 m uplift (probably largely coseismic), and a probable further island-wide uplift occurred in the late Holocene. The U-series ages taken together with the heights of transgressive reefs show that uplift since 215 ka was, on average, at similar to0.52 mm/y; although since 5 ka the uplift rate was, on average, similar to1.6 mm/y (the assumption being that a 1.5 m above sea-level reef has a coseismic origin). Elevation of transgressive reefs 5a, 5b and 5c and their ages indicates an island-wide subsidence during the period ?124-89 ka (i.e. Late Quaternary uplift/subsidence was jerky). Late Quaternary uplift/subsidence on the northwest coast of Tanna is considered to be due to irregular thicknesses of crust being subducted beneath Tanna.
Resumo:
1. The often complex architecture of coral reefs forms a diversity of light microhabitats. Analogous to patterns in forest plants, light variation may drive strategies for efficient light utilization and metabolism in corals. 2. We investigated the spatial distribution of light regimes in a spur-and-groove reef environment and examine the photophysiology of the coral Montipora monasteriata (Forskal 1775), a species with a wide habitat distribution. Specifically, we examined the variation in tissue and skeletal thickness, and photosynthetic and metabolic responses among contrasting light microhabitats. 3. Daily irradiances reaching corals in caves and under overhangs were 1-5 and 30-40% of those in open habitats at similar depth (3-5 m), respectively. Daily rates of net photosynthesis of corals in cave habitats approximated zero, suggesting more than two orders of magnitude variation in scope for growth across habitats. 4. Three mechanisms of photoadaptation or acclimation were observed in cave and overhang habitats: (1) a 20-50% thinner tissue layer and 40-60% thinner skeletal plates, maximizing light interception per unit mass; (2) a two- to threefold higher photosynthetic efficiency per unit biomass; and (3) low rates of dark respiration. 5. Specimens from open and cave habitats displayed a high capacity to acclimate to downshifts or upshifts in irradiance, respectively. However, specimens in caves displayed limited acclimation to further irradiance reduction, indicating that these live near their irradiance limit. 6. Analogous to patterns for some plant species in forest gaps, the morphological plasticity and physiological flexibility of M. monasteriata enable it to occupy light habitats that vary by more than two orders of magnitude.
Resumo:
Recent reports of contamination of the Great Barrier Reef Marine Park by herbicides used in antifouling paints and in agriculture have caused concern over the possible effects on corals in nearshore areas. Pulse-Amplitude Modulated (PAM) chlorophyll fluorescence techniques were used to examine changes in the maximum effective quantum yield (ΔF/Fm′) of symbiotic dinoflagellates within the host tissues (in hospite) of the coral Seriatopora hystrix exposed to a number of Photosystem II (PSII) inhibiting herbicides in short-term toxicity tests. The concentration of herbicide required to reduce ΔF/Fm′ by 50% (median effective concentration [EC50]) differed by over 2 orders of magnitude: Irgarol 1051 (0.7 μg l-1) > ametryn (1.7 μg l-1) > diuron (2.3 μg l-1) > hexazinone (8.8 μg l -1) > atrazine (45 μg l-1) > simazine (150 μg l-1) > tebuthiuron (175 μg l-1) > ionynil (> 1 mg l-1). Similar absolute and relative toxicities were observed with colonies of the coral Acropora formosa (Irgarol 1051 EC50: 1.3 μg l-1, diuron EC50: 2.8 μg l-1), Time-course experiments indicated that ΔF/Fm′ was rapidly reduced (i.e. within minutes) in S. hystrix exposed to Irgarol 1051 and diuron. On return to fresh running seawater, ΔF/Fm′ recovered quickly in diuron-exposed corals (i.e. in minutes to hours), but slowly in corals exposed to Irgarol 1051 (i.e. hours to days). Time-course experiments indicated that the effects of diuron (3 μg l-1) on S. hystrix were inversely related to temperature over the range 20 to 30 °C, although initially the effects were less at the lower temperatures. Repeated exposure to pulses of Irgarol 1051 (daily 2 h exposure to 30 μg l -1 over 4 d) resulted in a 30% decrease in the density of symbiotic dinoflagellates in the tissues of S. hystrix.
Resumo:
There is concern of the effects of Produced Formation Water (PFW, an effluent of the offshore oil and gas industry) on temperate/tropical marine organisms of the North West Shelf (NWS) of Australia. Little is known of the effects of PFW on tropical marine organisms, especially keystone species. Exposing the coral Plesiastrea versipora to a range (3-50% v/v) of PFW from Harriet A oil platform resulted in a reduction in photochemical efficiency of the symbiotic dinoflagellate algae in hospite ( in the coral tissues), assessed as a decrease in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) measured using chlorophyll fluorescence techniques. Significant differences were noted at PFW concentrations >12.5% ( v/v). In corals where F-v/F-m was significantly lowered by PFW exposure, significant discolouration of the tissues occurred in a subsequent 4-day observation period. The discolouration ( coral bleaching) was caused by a loss of the symbiotic dinoflagellates from the tissues, a known sublethal stress response of corals. PFW caused a significant decrease in F-v/F-m in symbiotic dinoflagellates freshly isolated from the coral Heliofungia actiniformis at 6.25% PFW, slightly lower than the studies in hospite. Corals exposed to lower PFW concentrations (range 0.1%-10% PFW v/v) for longer periods (8 days) showed no decrease in F-v/F-m, discolouration, loss of symbiotic dinoflagellates or changes in gross photosynthesis or respiration ( measured using O-2 exchange techniques). The study demonstrates minor toxicity of PFW from Harriet A oil platform to corals and their symbiotic algae.
Resumo:
The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.
Resumo:
The molecular diversity of symbiotic dinoflagellates associated with the widespread western Pacific coral Plesiastrea versipora was explored in order to examine if associations between reef-building corals and symbiotic dinoflagellates change with environment. Several ribosomal DNA genes with different evolutionary rates were used.. including the large subunit (28S), the 5.8S region and the internal transcribed spacers (ITS). The phylogenetic analysis of the 28S and 5.8S rDNA regions indicated that a single endosymbiont species, highly related to one of the species of Symbiodinium in clade C (=Synbiodinium goreaui, Trench et Blank), associates with P. versipora along the Ryukyu Archipelago. The persistence of the same endosymbiont within P. versipora across this wide array of latitudes may be a result of such features as the Kuroshio Current, which brings tropical temperatures as far north as Honshu, Japan. Analysis of the faster evolving ITS rDNA region revealed significant genetic variability within endosymbionts from different populations. This variation was due to a high degree of interpopulation variability, based on the proportion of pairwise variation detected among the populations (0.95% approximately). By comparison with other studies, the results also indicate that some ITS1 haplotypes from P. versipora endosymbionts seem to be widely distributed within the western Pacific Ocean, ranging from the Great Barrier Reef to the northeast of the China Sea.
Resumo:
Most scleractinian coral species are widely distributed across the tropical and subtropical Indo-Pacific. However, the genetic connectivity between populations of corals separated by large distances (thousands of kilometers) is not well known. We analyzed variability in the nucleotide sequence of the internal transcribed spacer-1 (ITS-1) of the nuclear ribosomal gene unit in the ubiquitous coral Stylophora pistillata, across the western Pacific Ocean. Eight populations from Japan, Malaysia, and the northern and southern Great Barrier Reef (GBR) were studied. Phylogenetic analyses and analysis of molecular variance (AMOVA) clearly revealed that there is panmixia among these coral populations. AMOVA showed that ITS-1 sequence variability was greater within populations (78.37%) than among populations (12.06%). These patterns strongly suggest high levels of connectivity across the species' latitudinal distribution range in the western Pacific, as is seen in many marine invertebrates.
Resumo:
Rising sea temperatures are increasing the incidences of mass coral bleaching (the dissociation of the coral-algal symbiosis) and coral mortality. In this study, the effects of bleaching (induced by elevated light and temperature) on the condition of symbiotic dinoflagellates (Symbiodinium sp.) within the tissue of the hard coral Stylophora pistillata (Esper) were assessed using a suite of techniques. Bleaching of S. pistillata was accompanied by declines in the maximum potential quantum yield of photosynthesis (F-v/F-m, measured using pulse amplitude modulated [PAM] fluorometry), an increase in the number of Sytox-green-stained algae (indicating compromised algal membrane integrity and cell death), an increase in 2',7'-dichlorodihydrofluroscein diacetate (H(2)DCFDA)stained algae (indicating increased oxidative stress), as well as ultrastructural changes (vacuolisation, losses of chlorophyll, and an increase in accumulation bodies). Algae expelled from S. pistillata exhibited a complete disorganisation of cellular contents; expelled cells contained only amorphous material. In situ samples taken during a natural mass coral bleaching event on the Great Barrier Reef in February 2002 also revealed a high number of Sytox-labelled algae cells in symbio. Dinoflagellate degeneration during bleaching seems to be similar to the changes resulting from senescence-phase cell death in cultured algae. These data support a role for oxidative stress in the mechanism of coral bleaching and highlight the importance of algal degeneration during the bleaching of a reef coral.
Resumo:
Explants of the hard coral Seriatopora hystrix were exposed to sublethal concentrations of the herbicide diuron DCMU (N'-(3,4-dichlorophenyl,-N,N-dimethylurea)) and the heavy metal copper. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the effects on the photosynthetic efficiency of the algal symbionts in the tissue (in Symbio), and chlorophyll fluorescence and counts of symbiotic algae (normalised to surface area) were used to assess the extent of coral bleaching. At 30 mug DCMU l(-1), there was a reduction in both the maximum effective quantum yield (DeltaF/F-m') and maximum potential quantum yield (F-v/F-m) of the algal symbionts in symbio. Corals subsequently lost their algal symbionts and discoloured (bleached), especially on their upper sunlight-exposed surfaces. At the same DCMU concentration but under low light (5% of growth irradiance), there was a marked reduction in DeltaF/F-m' but only a slight reduction in F-v/F-m and slight loss of algae. Loss of algal symbionts was also noted after a 7 d exposure to concentrations as low as 10 mug DCMU l(-1) under normal growth irradiance, and after 14 d exposure to 10 mug DCMU l(-1) under reduced irradiance. Collectively the results indicate that DCMU-induced bleaching is caused by a light-dependent photoinactivation of algal symbionts, and that bleaching occurs when F-v/F-n, (measured 2 h after sunset) is reduced to a value of less than or equal to 0.6. Elevated copper concentrations (60 mug Cu l(-1) for 10 h) also induced a rapid bleaching in S. hystrix but without affecting the quantum yield of the algae in symbio. Tests with isolated algae indicated that substantially higher concentrations (300 mug Cu l(-1) for 8 h) were needed to significantly reduce the quantum yield. Thus, copper-induced bleaching occurs without affecting the algal photosynthesis and may be related to effects on the host (animal). It is argued that warm-water bleaching of corals resembles both types of chemically induced bleaching, suggesting the need for an integrated model of coral bleaching involving the effect of temperature on both host (coral) and algal symbionts.
Resumo:
The photoacclimation of endolithic algae ( of the genus Ostreobium) inhabiting the skeleton of the Mediterranean coral Oculina patagonica during a bleaching event was examined. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques in situ were used to assess the photosynthetic efficiency of endolithic algae in the coral skeleton and the symbiotic dinoflagellates (zooxanthellae) in the coral tissue. Relative photosynthetic electron transport rates (ETRs) of the endolithic algae under bleached areas of the colony were significantly higher than those of endolithic algae from a healthy section of the colony and those of zooxanthellae isolated from the same section. Endolithic algae under healthy parts of the colony demonstrated an ETRmax of 16.5% that of zooxanthellae from tissue in the same section whereas endolithic algae under bleached sections showed ETRmax values that were 39% of those found for healthy zooxanthellae. The study demonstrates that endolithic algae undergo photoacclimation with increased irradiance reaching the skeleton. As PAM fluorometry has become a major tool for assessing levels of stress and bleaching in corals, the importance of considering the contribution of the endolithic algae to the overall chlorophyll fluorescence measured is highlighted.