938 resultados para Copper River and Northwestern Railway.
Resumo:
Memorandum of material furnished for superstructure on the line of the Port Dalhousie Thorold Railway by contract. This document includes: Bills of timber, memorandums of planking, fencing, ties, track laying, masonry and bolts and spikes. There are also diagrams of culverts. One of the pages is loose and the outer pages are somewhat discoloured (32 pages, handwritten and bound with ribbon, n.d.
Resumo:
Memorandum respecting differences between the approximate and the final estimate (3 ¼ pages, handwritten), n.d.
Resumo:
List of the number of loads dredged by Smiley’s Dredge since the 1st of October along the Welland Railway. This is addressed to S.D. Woodruff and signed by James Woodall of Lock No. 1. There are holes and stains in the document. Text is not affected, Jan. 12, 1859.
Resumo:
Diagrams of cross sections on the Welland Railway, Port Dalhousie (4 hand-drawn diagrams), March 1860.
Resumo:
Scrap of paper with numbers of railway journals volume numbers, n.d.
Resumo:
Amount paid to Frederick Holmes by the Welland Railway Company for 26 days of service during February, March and April for excavations made at Port Dalhousie (1 page, handwritten). This is signed by S.D. Woodruff, Aug. 28, 1860.
Resumo:
Voucher #22 to James McCoppen (copy) which includes a letter from James McCoppen regarding a claim for having water backed up into his grain and grass by the embankment of the railroad. The letter is dated June 24, 1857 and the voucher is dated Jul. 1, 1857.
Resumo:
Pay roll voucher #27 from the Engineer Department of the Welland Railway for sundries for the month of August, 1857. A section of the list has been cut from the page, Aug. 31, 1857.
Resumo:
Pay roll voucher #30 from the Engineer Department of the Welland Railway for the Southern Division for the month of August, Aug. 31, 1857.
Resumo:
Letter to W.D. Woodruff from E.C. Wheeler Jr. of N.W. Harris and Co. Bankers of New York (1 page, printed) regarding taking on some more of the Chicago, Rock Island and Pacific Railway bonds, Jan. 15, 1909.
Resumo:
- The first part of the document traces Mr. Haile’s lineage. His father, James Haile was a farmer. His grandfather, Amos Haile was a sailor for the early part of his life. He was placed on a British man-of- war in about 1758. He escaped and settled in Putney. (p.1) - His father’s mother’s maiden name was Parker. His mother’s maiden name was Campbell. Her father was a captain in the Revolutionary Army. (p.2) - His earliest memories revolve around the death of his aunt and the funeral of General Washington (although he did not witness this). At the time, his father was a Lieutenant in a regiment militia of Light Dragoons who wore red coats. (p.3) - In 1804, an addition was added to the Haile house which necessitated that William was to stay home to help with the building. He continued to study and read on his own. He was particularly interested in Napoleon Bonaparte’s victories. In that same year he was sent to Fairfield Academy where Reverend Caleb Alexander was the principal. (p.4) - On June 1, 1812, William was appointed as an Ensign in the Infantry of the Army of the United States. He was put into the recruiting service at Nassau (20 miles east of Albany) where he remained until September. (p.4) - He was assigned to the 11th Regiment of the W.S. Infantry and directed to proceed to Plattsburgh to report to Colonel Isaac Clark. (p.7) - He was assigned to the company commanded by Captain Samuel H. Halley who was not in the best of health and often absent. For a good part of the time William was in charge of the company. (p.8) - The 11th Regiment was encamped beside the 15th Regiment commanded by Col. Zebulon Montgomery Pike [Pike’s Peak was named after him]. Col. Pike generously drilled and disciplined the 11th Regiment since their officers didn’t seem capable of doing so. (p.8) - The first brigade to which William’s regiment was attached to was commanded by Brigadier General Bloomfield of New Jersey. Brigadier Chandler of Maine commanded the second brigade. (p.9) - At the beginning of November, Major General Dearborn took command of the army. He had been a good officer in his time, but William refers to him as “old and inefficient” earning him the nickname “Granny Dearborn” (p.9) - On November 17th, 1812, General Dearborn moved north with his army. The troops ended up in Champlain. There was no fighting, only a skirmish between a party of men under Colonel Pike and a few British troops who he succeeded in capturing. (p.10) - The troops were moved to barracks for the winter. Colonel Pike’s troops were put into suitable barracks and kept healthy but another part of the army (including the 11th Regiment) were sent to a barracks of green lumber north of Burlington. Disease soon broke out in the damp barracks and the hundreds of deaths soon followed. One morning, William counted 22 bodies who had died the previous night. He puts a lot of this down to an inexperienced commanding officer, General Chandler. (p.11) - At the beginning of 1813, William was stationed as a recruiter on the shore of Shoreham across from Fort Ticonderoga. In February, he returned to Burlington with his recruits. In March he received an order from General Chandler to proceed to Whitehall and take charge of the stores and provisions. In April and May it was decided that his half of the regiment (the First Battalion) should march to Sackett’s Harbour, Lake Ontario. They arrived at Sackett’s Harbour about the 10th of June, a few days after the Battle of Sackett’s Harbour. (p.12) - He was camped near the site of Fort Oswego and got word to head back to Sackett’s Harbour. A storm overtook the schooner that he was on. (p.14) - William was involved in the Battle of Williamsburg (or Chrysler’s Farm) which he calls a “stupid and bungling affair on the part of our generals”.(p. 18) - General Covington was wounded and died a few days after the battle. (p.19) - William speaks of being ill. The troops were ordered to march to Buffalo, but he is able to go to his father’s house in Fairfield where his mother nursed him back to health (p.23) - Upon arrival at Buffalo, the “old fogy Generals” were replaced with younger, more efficient men. (p.25) - On page 27 he sums up a few facts: In 1812, the army was assembled on Lake Champlain with the intention of capturing Montreal, and then Quebec. That year, under General Dearborn the army marched as far as Champlain, then turned back and went into winter quarters. In 1813, the army was assembled at Sackett’s Harbour and that year the campaign ended at French Mills which was 70 or 80 miles from Montreal. In 1814, the army at Buffalo were some 400 miles from Montreal with still the same object in view. - He says that these facts make “a riddle – difficult to explain”. (p.27) - On the evening of July 2nd they embarked on the boats with the objective of capturing Fort Erie. The enemy were all made prisoners of war (p.27) - On July 4th they went to Street’s Creek, 2 miles above the Chippewa [Chippawa] River (p.28) - Page 29 is titled The Battle of Chippewa [Chippawa] - He speaks of 2 drummers who were fighting over the possession of a drum when a cannonball came along and took of both of their heads (p.29) - He proclaims that this was one of the “most brilliant battles of the war”. The battle was fought and won in less than an hour after they left their tents. He credits General Scott with this success and states that was due to his rapid orders and movements. (p.30) - The dead of the battle remained on the field during the night. He describes this as quite gloomy seeing friend and foe lying side by side. At daybreak they set to work digging trenches to bury the dead. (p.31) - Colonel Campbell was wounded and advised to have his leg amputated. He refused, and subsequently died. (p.32) - It is said that the British threw several of their dead into the river and they went over the Falls. (p.32) - His troops repaired the bridge over Chippawa which the enemy had partially destroyed and then pursued the British as far as Queenston Heights. (p.32) - On pages 33 and 34 he speaks about meeting an old friend of his, Philip Harter. - The account ends at Queenston Heights
Resumo:
La préparation de polymères à base d’acides biliaires, molécules biologiques, a attiré l'attention des chercheurs en raison des applications potentielles dans les domaines biomédicaux et pharmaceutiques. L’objectif de ce travail est de synthétiser de nouveaux biopolymères dont la chaîne principale est constituée d’unités d’acides biliaires. La polymérisation par étapes a été adoptée dans ce projet afin de préparer les deux principales classes de polymères utilisés en fibres textiles: les polyamides et les polyesters. Des monomères hétéro-fonctionnels à base d’acides biliaires ont été synthétisés et utilisés afin de surmonter le déséquilibre stoechiométrique lors de la polymérisation par étapes. Le dérivé de l’acide lithocholique modifié par une fonction amine et un groupement carboxylique protégé a été polymérisé en masse à températures élevées. Les polyamides obtenus sont très peu solubles dans les solvants organiques. Des polyamides et des polyesters solubles en milieu organique ont pu être obtenus dans des conditions modérées en utilisant l’acide cholique modifié par des groupements azide et alcyne. La polymérisation a été réalisée par cycloaddition azoture-alcyne catalysée par l'intermédiaire du cuivre(Ι) avec deux systèmes catalytiques différents, le bromure de cuivre(I) et le sulfate de cuivre(II). Seul le bromure de cuivre(Ι) s’est avéré être un catalyseur efficace pour le système, permettant la préparation des polymères avec un degré de polymérisation égale à 50 et une distribution monomodale de masse moléculaire (PDI ˂ 1.7). Les polymères synthétisés à base d'acide cholique sont thermiquement stables (307 °C ≤ Td ≤ 372 °C) avec des températures de transition vitreuse élevées (137 °C ≤ Tg ≤ 167 °C) et modules de Young au-dessus de 280 MPa, dépendamment de la nature chimique du lien.
Resumo:
The thesis deals with studies on the synthesis, characterisation and catalytic applications of some new transition metal complexes of the Schiff bases derived from 3-hydroxyquinoxaline 2-carboxaldehyde.. Schiff bases which are considered as ‘privileged ligands’ have the ability to stabilize different metals in different oxidation states and thus regulate the performance of metals in a large variety of catalytic transformations. The catalytic activity of the Schiff base complexes is highly dependant on the environment about the metal center and their conformational flexibility. Therefore it is to be expected that the introduction of bulky substituents near the coordination sites might lead to low symmetry complexes with enhanced catalytic properties. With this view new transition metal complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde have been synthesised. These Schiff bases have more basic donor nitrogen atoms and the presence of the quinoxaline ring may be presumed to build a favourable topography and electronic environment in the immediate coordination sphere of the metal. The aldehyde was condensed with amines 1,8-diaminonaphthalene, 2,3-diaminomaleonitrile, 1,2-diaminocyclohexane, 2-aminophenol and 4-aminoantipyrine to give the respective Schiff bases. The oxovanadium(IV), copper(II) and ruthenium(II)complexes of these Schiff bases were synthesised and characterised. All the oxovanadium(IV) complexes have binuclear structure with a square pyramidal geometry. Ruthenium and copper form mononuclear complexes with the Schiff base derived from 4- aminoantipyrine while binuclear square planar complexes are formed with the other Schiff bases. The catalytic activity of the copper complexes was evaluated in the hydroxylation of phenol with hydrogen peroxide as oxidant. Catechol and hydroquinone are the major products. Catalytic properties of the oxovanadium(IV) complexes were evaluated in the oxidation of cyclohexene with hydrogen peroxide as the oxidant. Here allylic oxidation products rather than epoxides are formed as the major products. The ruthenium(II) complexes are found to be effective catalysts for the hydrogenation of benzene and toluene. The kinetics of hydrogenation was studied and a suitable mechanism has been proposed.
Resumo:
The present study is an investigation to address relevant chemical aspects of the three varied aquatic environments, such as mangroves, river and the estuary. The sampling locations include a thick mangrove forest with high tidal activity, a mangrove nursery with minimal disturbances and low tidal inundation, a highly polluted riverine system and an estuarine site, as reference. Nutrients and bioorganic compounds in the water column and surface sediment were estimated in an attempt to understand the regeneration properties of these different aquatic systems.Assessment of the trace metal pollution was also carried out.
Resumo:
In the present work,the chelating behaviour of thiosemicarbazones of a heterocyclic diketone, 2,6-diacetylpyridine is studied,with the aim of investigating the influence coordination exerts on their conformation and /or configuration, in connection with the nature of the metal and of the counter ion.The various possibilities like unsubstitution,ring incorporation at terminal nitrogen and condensation of one of the ketone group alone have been tried for ligand selection.Mainly first row transition metals like manganese,iron,nickel,copper,zinc and cadmium are studied.Metals like cobalt also were studied but could not result in fruitful isolation of the compound due to solubility problems.Different spectroscopic and characterization techniques have been utilized to reveal the nature of the metal and the ligands in coordinated metal complex.