891 resultados para Control and Systems Engineering
Resumo:
Includes bibliographical references.
Resumo:
Granulation is one of the fundamental operations in particulate processing and has a very ancient history and widespread use. Much fundamental particle science has occurred in the last two decades to help understand the underlying phenomena. Yet, until recently the development of granulation systems was mostly based on popular practice. The use of process systems approaches to the integrated understanding of these operations is providing improved insight into the complex nature of the processes. Improved mathematical representations, new solution techniques and the application of the models to industrial processes are yielding better designs, improved optimisation and tighter control of these systems. The parallel development of advanced instrumentation and the use of inferential approaches provide real-time access to system parameters necessary for improvements in operation. The use of advanced models to help develop real-time plant diagnostic systems provides further evidence of the utility of process system approaches to granulation processes. This paper highlights some of those aspects of granulation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The present study describes a pragmatic approach to the implementation of production planning and scheduling techniques in foundries of all types and looks at the use of `state-of-the-art' management control and information systems. Following a review of systems for the classification of manufacturing companies, a definitive statement is made which highlights the important differences between foundries (i.e. `component makers') and other manufacturing companies (i.e. `component buyers'). An investigation of the manual procedures which are used to plan and control the manufacture of components reveals the inherent problems facing foundry production management staff, which suggests the unsuitability of many manufacturing techniques which have been applied to general engineering companies. From the literature it was discovered that computer-assisted systems are required which are primarily `information-based' rather than `decision based', whilst the availability of low-cost computers and `packaged-software' has enabled foundries to `get their feet wet' without the financial penalties which characterized many of the early attempts at computer-assistance (i.e. pre-1980). Moreover, no evidence of a single methodology for foundry scheduling emerged from the review. A philosophy for the development of a CAPM system is presented, which details the essential information requirements and puts forward proposals for the subsequent interactions between types of information and the sub-system of CAPM which they support. The work developed was oriented specifically at the functions of production planning and scheduling and introduces the concept of `manual interaction' for effective scheduling. The techniques developed were designed to use the information which is readily available in foundries and were found to be practically successful following the implementation of the techniques into a wide variety of foundries. The limitations of the techniques developed are subsequently discussed within the wider issues which form a CAPM system, prior to a presentation of the conclusions which can be drawn from the study.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.
Resumo:
This PhD thesis reports the main activities carried out during the 3 years long “Mechanics and advanced engineering sciences” course, at the Department of Industrial Engineering of the University of Bologna. The research project title is “Development and analysis of high efficiency combustion systems for internal combustion engines” and the main topic is knock, one of the main challenges for boosted gasoline engines. Through experimental campaigns, modelling activity and test bench validation, 4 different aspects have been addressed to tackle the issue. The main path goes towards the definition and calibration of a knock-induced damage model, to be implemented in the on-board control strategy, but also usable for the engine calibration and potentially during the engine design. Ionization current signal capabilities have been investigated to fully replace the pressure sensor, to develop a robust on-board close-loop combustion control strategy, both in knock-free and knock-limited conditions. Water injection is a powerful solution to mitigate knock intensity and exhaust temperature, improving fuel consumption; its capabilities have been modelled and validated at the test bench. Finally, an empiric model is proposed to predict the engine knock response, depending on several operating condition and control parameters, including injected water quantity.
Resumo:
This thesis deals with robust adaptive control and its applications, and it is divided into three main parts. The first part is about the design of robust estimation algorithms based on recursive least squares. First, we present an estimator for the frequencies of biased multi-harmonic signals, and then an algorithm for distributed estimation of an unknown parameter over a network of adaptive agents. In the second part of this thesis, we consider a cooperative control problem over uncertain networks of linear systems and Kuramoto systems, in which the agents have to track the reference generated by a leader exosystem. Since the reference signal is not available to each network node, novel distributed observers are designed so as to reconstruct the reference signal locally for each agent, and therefore decentralizing the problem. In the third and final part of this thesis, we consider robust estimation tasks for mobile robotics applications. In particular, we first consider the problem of slip estimation for agricultural tracked vehicles. Then, we consider a search and rescue application in which we need to drive an unmanned aerial vehicle as close as possible to the unknown (and to be estimated) position of a victim, who is buried under the snow after an avalanche event. In this thesis, robustness is intended as an input-to-state stability property of the proposed identifiers (sometimes referred to as adaptive laws), with respect to additive disturbances, and relative to a steady-state trajectory that is associated with a correct estimation of the unknown parameter to be found.
Resumo:
This thesis aims to illustrate the construction of a mathematical model of a hydraulic system, oriented to the design of a model predictive control (MPC) algorithm. The modeling procedure starts with the basic formulation of a piston-servovalve system. The latter is a complex non linear system with some unknown and not measurable effects that constitute a challenging problem for the modeling procedure. The first level of approximation for system parameters is obtained basing on datasheet informations, provided workbench tests and other data from the company. Then, to validate and refine the model, open-loop simulations have been made for data matching with the characteristics obtained from real acquisitions. The final developed set of ODEs captures all the main peculiarities of the system despite some characteristics due to highly varying and unknown hydraulic effects, like the unmodeled resistive elements of the pipes. After an accurate analysis, since the model presents many internal complexities, a simplified version is presented. The latter is used to linearize and discretize correctly the non linear model. Basing on that, a MPC algorithm for reference tracking with linear constraints is implemented. The results obtained show the potential of MPC in this kind of industrial applications, thus a high quality tracking performances while satisfying state and input constraints. The increased robustness and flexibility are evident with respect to the standard control techniques, such as PID controllers, adopted for these systems. The simulations for model validation and the controlled system have been carried out in a Python code environment.
Resumo:
Background: An evaluation of patients' preferences is necessary to understand the demand for different insulin delivery systems. The aim of this study was to investigate the association between socioeconomic status (SES) and patients' preferences and willingness to pay (WTP) for various attributes of insulin administration for diabetes management. Methods: We conducted a discrete choice experiment (DCE) to determine patients' preferences and their WTP for hypothetical insulin treatments. Both self-reported annual household income and education completed were used to explore differences in treatment preferences and WTP for different attributes of treatment across different levels of SES. Results: The DCE questionnaire was successfully completed by 274 patients. Overall, glucose control was the most valued attribute by all socioeconomic groups, while route of insulin delivery was not as important. Patients with higher incomes were willing to pay significantly more for better glucose control and to avoid adverse events compared to lower income groups. In addition, they were willing to pay more for an oral short-acting insulin ($Can 71.65 [95% confidence interval, $40.68, $102.62]) compared to the low income group ($Can 9.85 [95% confidence interval, 14.86, 34.56; P < 0.01]). Conversely, there were no differences in preferences when the sample was stratified by level of education. Conclusions: This study revealed that preferences and WTP for insulin therapy are influenced by income but not by level of education. Specifically, the higher the income, the greater desire for an oral insulin delivery system, whereas an inhaled route becomes less important for patients.
Effects of medium supplementation and pH control on lactic acid production from brewer`s spent grain
Resumo:
A cellulose pulp obtained by chemical pre-treatment of brewer`s spent grain was saccharified by a commercial cellulase preparation and the produced hydrolysate (50 g/l glucose) was fermented to lactic acid by Lactobacillus delbrueckii. The effects of pH control and nutrient supplementation of the hydrolysate on fermentation performance were investigated. Addition of 5g/l yeast extract enhanced the lactic acid volumetric productivity that attained 0.53 g/l h, value 18% higher than that obtained from non-supplemented hydrolysate. Addition of the MRS broth medium components (except the carbon source) was still better, providing a productivity of 0.79 g/l h. In all the cases, the lactic acid yield factor was of 0.7 g/g glucose consumed, but the fermentations stopped after 24 h due to the pH drop from 6.0 to 4.2, resulting in large amounts of residual glucose (38-41 g/l). Fermentation runs pH-controlled at 6.0 gave better results than those where the initial pH was not further controlled. The best result, 35.54 g/l lactic acid (0.99 g/g glucose consumed) was obtained during the pH-controlled fermentation of hydrolysate medium supplemented with MRS components. The volumetric productivity at the end of this fermentation was 0.59 g/l h, with a maximum of 0.82 g/l h during the first 12 h. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Two different fuzzy approaches to voltage control in electric power distribution systems are introduced in this paper. The real-time controller in each case would act on power transformers equipped with under-load tap changers. Learning systems are employed to turn the voltage-control relays into adaptive devices. The scope of this study has been limited to the power distribution substation, and the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage-control strategies that satisfy the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. Fuzzy control systems based on these two strategies have been implemented and the test results were highly satisfactory.
Resumo:
A fuzzy control strategy for voltage regulation in electric power distribution systems is introduced in this article. This real-time controller would act on power transformers equipped with under-load tap changers. The fuzzy system was employed to turn the voltage-control relays into adaptive devices. The scope of the present study has been limited to the power distribution substation, and both the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage control strategies that satisfy both the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. A prototype based on the fuzzy control strategy proposed in this paper has also been implemented for validation purposes and its experimental results were highly satisfactory.
Resumo:
This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.