964 resultados para Continental Drift
Resumo:
Palynological data from offshore Costa Rica, allow us to investigate the relationship between dinoflagellate cyst assemblages and changes in regional oceanic primary productivity. From Miocene to Pleistocene, productivity at ODP Site 1039 was influenced by tectonic drift, as Site 1039 approached the continent, from the Equator to its current position at ~10°N. In addition, dinoflagellate abundance is modulated by regional productivity events, which modified primary productivity, as also indicated by available data on calcareous nannofossils, diatoms, TOC, and CaCO3 content. Five palynomorph intervals are defined. The early-late Miocene one, dominated by Batiacasphaera, represents relatively stable, productive oceanic conditions before the closure of the Indonesian and Panama Seaways. The late Miocene decrease in palynomorph recovery is related to the Carbonate Crash Event. The high abundance and diversity of the assemblages at the end of the late Miocene to early Pliocene indicate increased productivity related to the Global Biogenic Bloom, and a change in dominance from Batiacasphaera to Impagidinium to Nematosphaeropsis. The low abundance of the late Pliocene interval is related to El Niño-like conditions, and there is another change related to the disappearance of Batiacasphaera and dominance of Impagidinium, Nematosphaeropsis, and Operculodinium. The abundant Pleistocene assemblages represent increased marine productivity, and a high influx of continental palynomorphs and bissacate pollen, associated with the proximity of the Costa Rica Dome. Pleistocene dinoflagellates are characterized by Spiniferites and Selenopemphix, together with rare Impagidinium and Nematosphaeropsis.
Resumo:
The presence and abundance of anaerobic ammonium-oxidizing (anammox) bacteria was investigated in continental shelf and slope sediments (300-3000 m water depth) off northwest Africa in a combined approach applying quantitative polymerase chain reaction (q-PCR) analysis of anammox-specific 16S rRNA genes and anammox-specific ladderane biomarker lipids. We used the presence of an intact ladderane monoether lipid with a phosphocholine (PC) headgroup as a direct indicator for living anammox bacteria and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane lipids, both intact and core lipids, in agreement with the presence of anammoxspecific 16S rRNA gene copies, indicating that anammox occurs at all sites. Concentrations of ladderane core lipids in core top sediments varied between 0.3 and 97 ng g**-1 sediment, with the highest concentrations detected at the sites located on the shelf at shallower water depths between 300 and 500 m. In contrast, the C20 [3]-ladderane monoether-PC lipid was most abundant in a core top sediment from 1500 m water depth. Both anammox-specific 16S rRNA gene copy numbers and the concentration of the C20 [3]-ladderane monoether-PC lipid increased downcore in sediments located at greater water depths, showing highest concentrations of 1.2 x 10**8 copies g**-1 sediment and 30 pg g**-1 sediment, respectively, at the deepest station of 3000 m water depth. This suggests that the relative abundance of anammox bacteria is higher in sediments at intermediate to deep water depths where carbon mineralization rates are lower but where anammox is probably more important than denitrification.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S22, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-03-01 and 2015-05-06 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S26, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-24 and 2015-02-21 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
The Mar del Plata Canyon is located at the continental margin off northern Argentina in a key intermediate and deep-water oceanographic setting. In this region, strong contour currents shape the continental margin by eroding, transporting and depositing sediments. These currents generate various depositional and erosive features which together are described as a Contourite Depositional System (CDS). The Mar del Plata Canyon intersects the CDS, and does not have any obvious connection to the shelf or to an onshore sediment source. Here we present the sedimentary processes that act in the canyon and show that continuous Holocene sedimentation is related to intermediate-water current activity. The Holocene deposits in the canyon are strongly bioturbated and consist mainly of the terrigenous "sortable silt" fraction (10-63 µm) without primary structures, similarly to drift deposits. We propose that the Mar del Plata Canyon interacts with an intermediate-depth nepheloid layer generated by the northward-flowing Antarctic Intermediate Water (AAIW). This interaction results in rapid and continuous deposition of coarse silt sediments inside the canyon with an average sedimentation rate of 160 cm/kyr during the Holocene. We conclude that the presence of the Mar del Plata Canyon decreases the transport capacity of AAIW, in particular of its deepest portion that is associated with the nepheloid layer, which in turn generates a change in the contourite deposition pattern around the canyon. Since sedimentation processes in the Mar del Plata Canyon indicate a response to changes of AAIW contour-current strength related to Late Glacial/Holocene variability, the sediments deposited within the canyon are a great climate archive for paleoceanographic reconstructions. Moreover, an additional involvement of (hemi) pelagic sediments indicates episodic productivity events in response to changes in upper ocean circulation possibly associated with Holocene changes in intensity of El Niño/Southern Oscillation.
Resumo:
Rupertina stabilis occupies a depth restricted biotope of suspension feeding animals situated at the Norwegian continental margin. It extends from the Voring plateau northwards for at least 200 - 300 km, in depths between 600 and 800 m. This slope position is known for relatively strong bottom currents and shifting watermass boundaries. - The species is attached to hard substrates, mainly stones or hydroid stalks and obviously prefers an elevated position. It is building a permanent cyst of sponge spicules and debris at the apertural region. The spicules are used to support a pseudopodial network similar to that described from Halyphysema (LIPPS 1983). It is believed to serve as a filter apparatus. - A review of known occurences in the Atlantic is given, suggesting a temperature adaption of the species ranging from 0°C to a maximum of 8°C. Specimens were successfully cultured for about 2-3 weeks.