951 resultados para Contextual graphs
Resumo:
In this paper, we investigate the use of manifold learning techniques to enhance the separation properties of standard graph kernels. The idea stems from the observation that when we perform multidimensional scaling on the distance matrices extracted from the kernels, the resulting data tends to be clustered along a curve that wraps around the embedding space, a behavior that suggests that long range distances are not estimated accurately, resulting in an increased curvature of the embedding space. Hence, we propose to use a number of manifold learning techniques to compute a low-dimensional embedding of the graphs in an attempt to unfold the embedding manifold, and increase the class separation. We perform an extensive experimental evaluation on a number of standard graph datasets using the shortest-path (Borgwardt and Kriegel, 2005), graphlet (Shervashidze et al., 2009), random walk (Kashima et al., 2003) and Weisfeiler-Lehman (Shervashidze et al., 2011) kernels. We observe the most significant improvement in the case of the graphlet kernel, which fits with the observation that neglecting the locational information of the substructures leads to a stronger curvature of the embedding manifold. On the other hand, the Weisfeiler-Lehman kernel partially mitigates the locality problem by using the node labels information, and thus does not clearly benefit from the manifold learning. Interestingly, our experiments also show that the unfolding of the space seems to reduce the performance gap between the examined kernels.
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) [27,28] to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel.
Resumo:
In this paper, we develop a new entropic matching kernel for weighted graphs by aligning depth-based representations. We demonstrate that this kernel can be seen as an aligned subtree kernel that incorporates explicit subtree correspondences, and thus addresses the drawback of neglecting the relative locations between substructures that arises in the R-convolution kernels. Experiments on standard datasets demonstrate that our kernel can easily outperform state-of-the-art graph kernels in terms of classification accuracy.
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.
Resumo:
Kernel methods provide a way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. In this paper, we propose a novel kernel on unattributed graphs where the structure is characterized through the evolution of a continuous-time quantum walk. More precisely, given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic. With this new graph to hand, we compute the density operators of the quantum systems representing the evolutions of two suitably defined quantum walks. Finally, we define the kernel between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
In this paper we propose a prototype size selection method for a set of sample graphs. Our first contribution is to show how approximate set coding can be extended from the vector to graph domain. With this framework to hand we show how prototype selection can be posed as optimizing the mutual information between two partitioned sets of sample graphs. We show how the resulting method can be used for prototype graph size selection. In our experiments, we apply our method to a real-world dataset and investigate its performance on prototype size selection tasks. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.
Resumo:
2010 Mathematics Subject Classification: 05C38, 05C45.
Resumo:
2010 Mathematics Subject Classification: 05C50.
Resumo:
Ez a tanulmány a projektvezetési szakirodalomban kialakult ismeretanyagot szem előtt tartva (noha tételesen nem hivatkozva arra) tárja fel azt a sajátos és tipikusnak nevezhető kontextust, amelyben a projektalapú szervezetek projektmarketing tevékenysége megnyilvánul. A tanulmány célja tehát nem magának a projektmarketingnek a kérdéskörére irányul, hanem elsősorban annak projektspecifikus kontextusára. Jellegét illetően a tanulmány spekulatív jellegű, vagyis lényegét tekintve nem empirikus kutatási eredményekből levont következtetésekre épül. _____ Traditional approach to project marketing focuses on process-related aspects of the marketing efforts of project- based organisations. This paper is different. Unlike to the traditional approach it highlights the decisive contextual features of project marketing, bearing in mind the typical project business from the point of view of project-based organisations. These features include: a) instead of physically existing products project-based organisations need to sell their ability to create the project outcome physically; b) the project outcome and the conditions of implementation are defined by the project client; c) project clients are involved in creating the project outcome; d) project implementation strategy applied in a client organisation may vary project by project. These determining contextual features shape to a great extent the actual competitive position of the project-based organisations which may vary project by project even in relation to the very same project client.
Resumo:
Interpersonal conflicts have the potential for detrimental consequences if not managed successfully. Understanding the factors that contribute to conflict resolution has implications for interpersonal relationships and the workplace. Researchers have suggested that personality plays an important and predictable role in conflict resolution behaviors (Chanin & Schneer, 1984; Kilmann & Thomas, 1975; Mills, Robey & Smith, 1985). However, other investigators have contended that contextual factors are important contributors in triggering the behavioral responses (Shoda & Mischel, 2000; Mischel & Shoda, 1995). The purpose of this study was to investigate the relationships among personality types, demographic characteristics and contextual factors on the conflict resolution behaviors reported by graduate occupational therapy students (n = 125). ^ The study design was correlational. The Myers Briggs Type Indicator (MBTI) and the Thomas-Kilmann (MODE) Instrument were used to establish the personality types and the context independent conflict resolution behaviors respectively. The effects of contextual factors of task vs. relationship and power were measured with the Conflict Case Scenarios Questionnaire (CCSQ). One-way ANOVA and linear regression procedures were used to test the relationships between personality types and demographic characteristics with the context independent conflict behaviors. Chi-Square procedures of the personality types by contextual conditions ascertained the effects of contexts in modifying the resolution modes. Descriptive statistics established a profile of the sample. ^ The results of the hypotheses tests revealed significant relationships between the personality types of feeling-thinking and sensing-intuition with the conflict resolution behaviors. The contextual attributes of task vs. relationship orientation and of peer vs. supervisor relationships were shown to modify the conflict behaviors. Furthermore, demographic characteristics of age, gender, GPA and educational background were shown to have an effect on the conflict resolution behaviors. The knowledge gained has implications for students' training, specifically understanding their styles and use of effective conflict resolution strategies. It also contributes to the knowledge on management approaches and interpersonal competencies and how this might facilitate the students' transition to the clinical role. ^
Resumo:
Graph-structured databases are widely prevalent, and the problem of effective search and retrieval from such graphs has been receiving much attention recently. For example, the Web can be naturally viewed as a graph. Likewise, a relational database can be viewed as a graph where tuples are modeled as vertices connected via foreign-key relationships. Keyword search querying has emerged as one of the most effective paradigms for information discovery, especially over HTML documents in the World Wide Web. One of the key advantages of keyword search querying is its simplicity—users do not have to learn a complex query language, and can issue queries without any prior knowledge about the structure of the underlying data. The purpose of this dissertation was to develop techniques for user-friendly, high quality and efficient searching of graph structured databases. Several ranked search methods on data graphs have been studied in the recent years. Given a top-k keyword search query on a graph and some ranking criteria, a keyword proximity search finds the top-k answers where each answer is a substructure of the graph containing all query keywords, which illustrates the relationship between the keyword present in the graph. We applied keyword proximity search on the web and the page graph of web documents to find top-k answers that satisfy user’s information need and increase user satisfaction. Another effective ranking mechanism applied on data graphs is the authority flow based ranking mechanism. Given a top- k keyword search query on a graph, an authority-flow based search finds the top-k answers where each answer is a node in the graph ranked according to its relevance and importance to the query. We developed techniques that improved the authority flow based search on data graphs by creating a framework to explain and reformulate them taking in to consideration user preferences and feedback. We also applied the proposed graph search techniques for Information Discovery over biological databases. Our algorithms were experimentally evaluated for performance and quality. The quality of our method was compared to current approaches by using user surveys.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
For years, researchers and human resources specialists have been searching for predictors of performance as well as for relevant performance dimensions (Barrick & Mount, 1991; Borman & Motowidlo, 1993; Campbell, 1990; Viswesvaran et al., 1996). In 1993, Borman and Motowidlo provided a framework by which traditional predictors such as cognitive ability and the Big Five personality factors predicted two different facets of performance: 1) task performance and 2) contextual performance. A meta-analysis was conducted to assess the validity of this model as well as that of other modified models. The relationships between predictors such as cognitive ability and personality variables and the two outcome variables were assessed. It was determined that even though the two facets of performance may be conceptually different, empirically they overlapped substantially (p= .75). Finally, results show that there is some evidence for cognitive ability as a predictor of both task and contextual performance and conscientiousness as a predictor of both task and contextual performance. The possible mediation of predictor-- criterion relationships was also assessed. The relationship between cognitive ability and contextual performance vanished when task performance was controlled.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.