910 resultados para Congo River
Resumo:
This paper presents an assessment of the effects of climate change on river flow regimes in representative English catchments, using the UKCP09 climate projections. These comprise a set of 10,000 coherent climate scenarios, used here (i) to evaluate the distribution of potential changes in hydrological behaviour and (ii) to construct relationships between indicators of climate change and hydrological change. The study uses six catchments, and focuses on change in average flow, high flow (Q5) and low flow (Q95). There is a large range in hydrological change in each catchment between the plausible UKCP09 climate projections, with differences between catchments largely due to differences in catchment geology and baseline water balance. The range in change between the UKCP09 projections is in most catchments smaller than the range between changes with scenarios based on the CMIP3 ensemble of climate models, and earlier UK scenarios produce changes that tend towards the lower (drier) end of the UKCP09 range. The difference between emissions scenarios is small compared to the range across the 10,000 scenarios. Changes in high flows are largely driven by changes in winter precipitation, whilst changes in low flows are determined by changes in summer precipitation and temperature.
Resumo:
Skillful and timely streamflow forecasts are critically important to water managers and emergency protection services. To provide these forecasts, hydrologists must predict the behavior of complex coupled human–natural systems using incomplete and uncertain information and imperfect models. Moreover, operational predictions often integrate anecdotal information and unmodeled factors. Forecasting agencies face four key challenges: 1) making the most of available data, 2) making accurate predictions using models, 3) turning hydrometeorological forecasts into effective warnings, and 4) administering an operational service. Each challenge presents a variety of research opportunities, including the development of automated quality-control algorithms for the myriad of data used in operational streamflow forecasts, data assimilation, and ensemble forecasting techniques that allow for forecaster input, methods for using human-generated weather forecasts quantitatively, and quantification of human interference in the hydrologic cycle. Furthermore, much can be done to improve the communication of probabilistic forecasts and to design a forecasting paradigm that effectively combines increasingly sophisticated forecasting technology with subjective forecaster expertise. These areas are described in detail to share a real-world perspective and focus for ongoing research endeavors.
Resumo:
Anthropogenic aerosols in the atmosphere have the potential to affect regional-scale land hydrology through solar dimming. Increased aerosol loading may have reduced historical surface evaporation over some locations, but the magnitude and extent of this effect is uncertain. Any reduction in evaporation due to historical solar dimming may have resulted in an increase in river flow. Here we formally detect and quantify the historical effect of changing aerosol concentrations, via solar radiation, on observed river flow over the heavily industrialized, northern extra-tropics. We use a state-of-the-art estimate of twentieth century surface meteorology as input data for a detailed land surface model, and show that the simulations capture the observed strong inter-annual variability in runoff in response to climatic fluctuations. Using statistical techniques, we identify a detectable aerosol signal in the observed river flow both over the combined region, and over individual river basins in Europe and North America. We estimate that solar dimming due to rising aerosol concentrations in the atmosphere around 1980 led to an increase in river runoff by up to 25% in the most heavily polluted regions in Europe. We propose that, conversely, these regions may experience reduced freshwater availability in the future, as air quality improvements are set to lower aerosol loading and solar dimming.
Resumo:
The total reactive phosphorus (TRP) and nitrate concentrations of the River Enborne, southern England, were monitored at hourly interval between January 2010 and December 2011. The relationships between these high-frequency nutrient concentration signals and flow were used to infer changes in nutrient source and dynamics through the annual cycle and each individual storm event, by studying hysteresis patterns. TRP concentrations exhibited strong dilution patterns with increasing flow, and predominantly clockwise hysteresis through storm events. Despite the Enborne catchment being relatively rural for southern England, TRP inputs were dominated by constant, non-rain-related inputs from sewage treatment works (STW) for the majority of the year, producing the highest phosphorus concentrations through the spring–summer growing season. At higher river flows, the majority of the TRP load was derived from within-channel remobilisation of phosphorus from the bed sediment, much of which was also derived from STW inputs. Therefore, future phosphorus mitigation measures should focus on STW improvements. Agricultural diffuse TRP inputs were only evident during storms in the May of each year, probably relating to manure application to land. The nitrate concentration–flow relationship produced a series of dilution curves, indicating major inputs from groundwater and to a lesser extent STW. Significant diffuse agricultural inputs with anticlockwise hysteresis trajectories were observed during the first major storms of the winter period. The simultaneous investigation of high-frequency time series data, concentration–flow relationships and hysteresis behaviour through multiple storms for both phosphorus and nitrate offers a simple and innovative approach for providing new insights into nutrient sources and dynamics.
Resumo:
Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast system. However, the operational applicability of such a system for floods developed over river networks requires further testing. One of the promising techniques for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast error covariance matrix. This representation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which is a further complication for dealing with floods in either urban areas or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence caused by spurious correlations. However, a spatially-based filter localization provides a substantial moderation in the development of the forecast error covariance matrix, directly improving the forecast and also making it possible to further benefit from a simultaneous online inflow error estimation and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization, which is physically-meaningful for the flood over a network problem. Using this metric, we further evaluate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously to sensible values. Results also indicate that friction is a second order effect in flood inundation models applied to gradually varied flow in large rivers. The study is not conclusive regarding whether in an operational situation the simultaneous estimation of friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based operational flood forecasting.
Resumo:
Nutrient enrichment and drought conditions are major threats to lowland rivers causing ecosystem degradation and composition changes in plant communities. The controls on primary producer composition in chalk rivers are investigated using a new model and existing data from the River Frome (UK) to explore abiotic and biotic interactions. The growth and interaction of four primary producer functional groups (suspended algae, macrophytes, epiphytes, sediment biofilm) were successfully linked with flow, nutrients (N, P), light and water temperature such that the modelled biomass dynamics of the four groups matched that of the observed. Simulated growth of suspended algae was limited mainly by the residence time of the river rather than in-stream phosphorus concentrations. The simulated growth of the fixed vegetation (macrophytes, epiphytes, sediment biofilm) was overwhelmingly controlled by incoming solar radiation and light attenuation in the water column. Nutrients and grazing have little control when compared to the other physical controls in the simulations. A number of environmental threshold values were identified in the model simulations for the different producer types. The simulation results highlighted the importance of the pelagic–benthic interactions within the River Frome and indicated that process interaction defined the behaviour of the primary producers, rather than a single, dominant driver. The model simulations pose interesting questions to be considered in the next iteration of field- and laboratory based studies.
Resumo:
Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [13C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.
Resumo:
This section of the report outlines the effect of different levels of climate change on exposure to river flood risk, at national and watershed scales.
Resumo:
Pinheiros River (Brazil) plays a pivotal role in supplying water to Billings Reservoir, which presents multiple uses (human drinking, energy generation, irrigation, navigation, fishing and leisure) An intense monitoring program was performed during the years 2007 and 2008 to find out whether on site flotation is a feasible solution or not for improving the water quality of this urban river, attenuating the pollutants load caused by the water pumping to the reservoir (approximately 10 m(3)s(-1)) The monitoring of 18 variables (13,429 laboratorial analysis during the period of 490 days), suggested that despite the convenience of the on site approach for water treatment, especially for rivers located in fully urbanized areas, the flotation system is not enough itself to recover Pinheiros River water quality, given the several constraints that apply Total phosphorus removal was high in percentage terms (about 90%), although the remaining concentrations were not so low (mean of 0 05 mg L(-1)) The removal efficiency of some variables was insufficient, leading to high final mean concentrations of metals [e g aluminium (0 29 mg L(-1)), chromium (0 02 mg L(-1)) and iron (1 1 mg L(-1))] as well as nitrogen-ammonia (25 8 mg L(-1)) and total suspended solids (18 mg L(-1)) in the treated water
Resumo:
In this report, we describe Henneguya arapaima n. sp., a parasite of the gill arch and gall bladder of Arapaima gigas (pirarucu) collected in the Araguaia River, in the municipality of Nova Crixas, Goias State, central Brazil. The plasmodia were white, round or ellipsoidal and measured 200-600 mu m. Parasite development was asynchronous and the mature spores were fusifonn and had smooth wall. The spores measurements were (range, with means +/- S.D. in parentheses): total length-48.4-53.1 mu m (51.6 +/- 3.4 mu m), body length-13.5-15.2 mu m (14.2 +/- 0.8 mu m), body width-5.1-6.1 mu m (5.7 +/- 0.5 mu m), body thickness-4.7-5.3 mu m (4.9 +/- 0.2 mu m) and caudal process length-38.0-41.2 mu m (38.3 +/- 2.9 mu m). The polar capsules were elongated and of unequal size, with lengths of 6.3-6.8 mu m (6.5 +/- 0.2) and 6.2-6.6 mu m (6.3 +/- 0.1) for the longest and shortest axes, respectively. Capsule width was 1.4-1.6 mu m (1.5 +/- 0.1). Histological analysis showed that the plasmodia occurred in the tunica adventitia of the gall bladder and were delimited by a thin capsule of connective tissue. In the gill arch, the plasmodia were also surrounded by connective tissue similar to the endomesium, of striated skeletal muscle cells. Sixty-five juvenile specimens of A. gigas weighing 1.0-25.0 kg were examined, 17 (26.1%) of which were infected. Of these, 14 (82.3%) had cysts in the gall bladder, two (11.7%) had cysts in the gill arch and only one (5.9%) had cysts in both organs. When the fish were grouped by weight, the prevalence of infection in fish weighing up to 10.0 kg (20.7%) was significantly lower than in fish weighing 10.1-25.0 kg (50%) (G = 3.93; d.f. = 1; p < 0.05). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
New structural, geochronological and paleomagnetic data were obtained on dolerite dikes of the Nola region (Central African Republic) at the northern border of the Congo craton. In this region metavolcanic, successions were thrust southward onto the craton during the Panafrican orogenic events. Our structural data reveal at least two structural klippes south of the present-day limits of the Panafrican nappe suggesting that it has once covered the whole Nola region, promoting the pervasive hydrothermal green-schist metamorphism observed in the underlying cratonic basement and also in the intrusive dolerite dikes. Paleomagnetic measurements revealed a stable dual-polarity low-inclination magnetization component in nine dikes (47 samples), carried by pyrrhotite and magnetite. This component corresponds to a paleopole at 304.8 degrees E and 61.8 degrees S (dp = 5.4, dm = 10.7) graded at 2 = 6. Both metamorphism and magnetic resetting were dated by the Ar-40/Ar-39 method on amphibole grains separated from the dikes at 571 +/- 6 Ma. The Nola pole is the first well-dated paleomagnetic pole for the Congo craton between 580 and 550 Ma. It marks a sudden change in direction of the Congo craton apparent polar wander path at the waning stages of the Panafrican orogenic events. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Tiete River and its tributary Pinheiros River receive a highly complex organic and inorganic pollutants load from sanitary sewage and industrial sources, as well as agricultural and agroindustrial activities. The aim of the present study was to evaluate the embryotoxic and teratogenic effects of sediments from selected locations in the Tiete River Basin by means of the sediment contact embryo toxicity assay with Danio rerio, in order to provide a comprehensive and realistic insight into the bioavailable hazard potential of these sediment samples. Lethal and sub-lethal effects were recorded, and high embryo toxicity could be found in the samples not only in the vicinity of the megacity Sao Paulo (Billings reservoir and Pinheiros River samples), but also downstream (in the reservoirs Barra Bonita, Promissao and Tres Irmaos). Results confirm that most toxicity is due to the discharges of the metropolitan area of Sao Paulo. However, they also indicate additional sources of pollutants along the river course, probably from industrial, agricultural and agroindustrial residues, which contribute to the degradation of each area. The sediment contact fish embryo test showed to be powerful tool to detect embryo toxicity in sediments, not only by being a sensitive method, but also for taking into account bioavailability. This test provides an ecological highly realistic and relevant exposure scenario, and should therefore be added in ecotoxicological sediment quality assessments. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The mid-Araguaia River basin in central Brazil is considered a priority area for biodiversity conservation, and Parque Estadual do Cantao (PEC) is one of the most important protected areas in this ecotone between Cerrado and Amazonia. This area suffers an intensive human pressure with high rates of deforestation, and still remains poorly studied in terms of biodiversity. From June 2007 to November 2008 we sampled small mammals from both banks of the mid-Araguaia River, in the states of Tocantins and Para. Data are given about morphological traits, geographic distribution and natural history of 22 species of small non-volant mammals (eight marsupials and 14 rodents) surveyed at PEC and its surroundings. We also present mitochondrial phylogenetic analyses that allow species identification within the genera: Oecomys, Oligoryzomys and Rhipidomys, and delineate an undescribed species of Thrichomys. Based on morphologic and molecular data, we describe a new species of Rhipidomys previously assigned to R. nitela, which is apparently endemic to the Araguaia-Tocantins basin in the Cerrado. Additionally, our phylogenetic analyses provide support for the role played by the Araguaia River as an important geographic barrier for two sister species of Rhipidomys.