903 resultados para Complementary Therapies, utilization
Resumo:
The present study analyzes the repair process of autogenous bone graft in a block fixed with ethyl cyanoacrylate and 2-octyl cyanoacrylate adhesives in rat calvaria. Forty-eight rats, divided into 3 groups, received round osteotomies at the right parietal bone for the attainment of autogenous bone graft fragment, which was fixed at the opposite side to the donor site with ethyl cyanoacrylate (ethyl group) and 2-octyl cyanoacrylate (octyl group) adhesives. In the control group, bone fragment was only juxtaposed at the parietal bone surface without any fixation material. The animals were euthanized after 10 and 60 postoperative days. The calvariae were processed in a laboratory for the attainment of slides stained through the hematoxylin and eosin technique for histological and histometric analysis. The qualitative analysis showed a discrete inflammatory infiltrate in the control group and moderate inflammatory infiltrate in the ethyl and octyl groups at the 10-day period, which remained at the 60-day period, mainly in the octyl group. The bone fragment remained bonded to the recipient site through the adhesive, but graft incorporation was not observed in any of the specimens. Resorption was higher in the octyl group followed by the ethyl and control groups, both at the 10-and 60-day periods, but with no statistical significance (P < .05). Although promoting graft fixation and its maintenance at the recipient site, both studied adhesives did not allow the graft incorporation, producing a localized and discrete inflammatory reaction, which persisted at 60 days, being more intense in the octyl cyanoacrylate group.
Resumo:
Models of daily energy requirement can help to establish better and more profitable feeding programs for poultry. Studies have been conducted at UNESP-Jaboticabal-Brazil with the aim of studying energy utilization in broiler breeders, laying hens, and broilers, and to establish metabolisable energy requirement models. The factorial approach was used to partition the energy requirements into maintenance, growth, and production components. The resulting models consider body weight, weight gain, egg production, and environmental temperature for the determination of the energy requirements of poultry. These models were evaluated in performance trials and provided good estimates. Therefore, they can be used to establish nutritional programs. The aim of this chapter is to describe the development of these models and to outline the results of our studies at UNESP.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sucrose utilization by Zymomonas mobilis: Levan production optimization using submerged fermentation
Resumo:
Levan is an extracellular polysaccharide (EPS), constituted by linked fructose units β (2,6), obtained by transfructosilation reaction during fermentation of microorganisms in a sucrose rich culture medium. The bacterial levan production is a good alternative of fructose source, besides having certain functional characteristics in the human body, such as a hypocholesterolemic and an anticarcinogenic agent. In the food industry, the levan can be used to fix colors and flavors, as well as to thickening and stabilizing agent in foods. This work aimed to analyze the kinetic parameters for levan production by Zymomonas mobilis CCT 4494, using submerged fermentation. The response surface methodology (RSM), was utilized to predict the optimization of medium for exopolymer production and the independent variables studied were: initial pH, incubation temperature, sucrose, KCl, K2SO4, MgSO4 and CaCl2. It was observed that the bacterium Z. mobilis CCT 4494 well adapted in medium containing high concentrations of sucrose.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interaction, biodegradation rates, proteoglycan interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent–dentin interaction was observed with GSE, which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates decreased remarkably following biomodification of dentin matrices after 24 h collagenase digestion. A significant decrease in the proteoglycan content of GSE-treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and the control. The tensile strength properties of GD-biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD- and GSE-treated samples were observed following exposure to collagenase and 8 months water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry, but also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.
Resumo:
Networked control systems (NCSs) are distributed control systems in which the sensors, actuators, and controllers are physically separated and connected through an industrial network. The main challenge related to the development of NCSs is the degenerative effects caused by the inclusion of this communication network in the closed loop control. In order to mitigate these effects, co-simulation tools for NCS have been developed to study the network influence in the NCS. This paper presents a revision about co-simulation tools for NCS and the application of two of these tools for the design and evaluation of NCSs. The TrueTime and Jitterbug tools were used together to evaluate the main configuration parameter that affects the performance of CAN-based NCS and to verify the NCS quality of control under various timing conditions including different transmission period of messages and network delays. Therefore, the simulation results led to the conclusion that despite the transmission period of messages is the most significant factor among the analyzed in the design of NCS, its influence is related to the kind of system with greater effects in NCSs with fast dynamics.