856 resultados para Coastal Vulnerability
Resumo:
Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).
Resumo:
Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.
Resumo:
The goal of this project was to investigate the influence of a large inland lake on adjacent coastal freshwater peatlands. The specific aim was to determine the source of groundwater for three differently formed peatlands located on the southern shore of Lake Superior. The groundwater study was conducted at Bete Grise, a peatland complex in a dune-swale system; Pequaming, a peatland developed in the swale of a tombolo; and Lightfoot Bay, a peatland developed in a barrier beach wetland complex. To determine the source of groundwater in the peatlands, transects of six groundwater monitoring wells were established at each study site, covering distinctly different vegetation zones. At Pequaming and Lightfoot Bay the transects monitored two vegetation zones: transition zone from upland and open fen. At Bete Grise, the transects monitored dunes and swales. Additionally, at all three sites, upland groundwater was monitored using three wells that were installed into the adjacent upland forest. Biweekly measurements of well water pH and specific conductance were carried out from May to October of 2010. At each site, vegetation cover, peat depths and surface elevations were determined and compared to Lake Superior water levels. From June 14 – 17, July 20 – 21 and September 10 – 12, stable isotopes of oxygen (18O/16O) ratios were measured in all the wells and for Lake Superior water. A mixing model was used to estimate the percentage of lake water influencing each site based on the oxygen isotope ratios. During the sampling period, groundwater at all three sites was supported primarily by upland groundwater. Pequaming was approximately 80 % upland groundwater supported and up to 20 % Lake water supported in the uppermost 1 m layer of peat column of the transition zone and open fen. Bete Grise and Lightfoot Bay were 100 % upland groundwater supported throughout the season. The height of Lake Superior was near typical levels in 2010. In years when the lake level is higher, Lake water could intrude into the adjacent peatlands. However, under typical hydrologic conditions, these coastal peatlands are primarily supported by upland groundwater.
Resumo:
Soil erosion is a natural geological phenomenon resulting from removal and transportation of soil particles by water, wind, ice and gravity. As soil erosion may be affected from cultural factors as well. The physical and social phenomena of soil erosion are researched in six communities in the upper part of Rio Grijalva Basin in the vicinity of Motozintla de Mendoza, Chiapas, Mexico. For this study, the USDA RUSLE model was applied to estimate soil erosion rates in the six communities based on the available data. The RUSLE model is based on soil properties, topography, and land cover and management factors. These results showed that estimated soil erosion rates ranged from a high of 2,050 metric ton ha-1 yr-1 to a low of 100 metric ton ha-1 yr-1. A survey concerning knowledge, attitudes and practices (KAP) related to soil erosion was also conducted in all 236 households in the six communities. The main findings of the KAP survey were: 69% of respondents did not know what soil erosion was, while over 40% of the population perceived that hurricanes are the biggest factors that cause soil erosion, and about 20 % of the interviewees said that the landslides are the consequences of the soil erosion. People in communities did not perceive cultural factors as important in conservation efforts for reduce vulnerability to erosion; therefore, the results obtained are suggested to be useful for informing efforts to educate stakeholders.
Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy
Resumo:
Die Autoren gehen davon aus, dass es soziale und kulturräumliche Unterschiede in den Wahrnehmungsweisen von zukünftigen Klimarisiken gibt und begründen ihre Annahme in theoretischer Hinsicht unter Hinzuziehung der sozialen Konstruktion der Wirklichkeit. Berichtet wird aus einem Forschungsprojekt, das die gesellschaftliche Verarbeitung von Klimarisiken in Küstenstädten der südlichen Nord- und Ostsee im Hinblick darauf untersucht, welche Vorstellungen von einer Vulnerabilität und Resilienz vorliegen. Ausführlich wird das methodische Design der Studie dargestellt. Im Rahmen einer Methodentriangulation wird eine standardisierte Delphi-Expertenbefragung mit einer wissenssoziologischen Diskursanalyse verbunden, um sowohl bisherige als auch zukünftige Vorstellungen von Vulnerabilität und Resilienz zu erheben. Am Beispiel ausgewählter Ergebnisse wird empirisch nachgewiesen, dass Wahrnehmungsunterschiede von Klimarisiken größer sind als angenommen. Die Ergebnisse sind allein aus den Delphi-Daten nicht erklärbar. Ein möglicher Erklärungsansatz ergibt sich ergänzend aus den Erkenntnissen der wissenssoziologischen Diskursanalyse.
Resumo:
Schizophrenia patients frequently present with subtle motor impairments, including higher order motor function such as hand gesture performance. Using cut off scores from a standardized gesture test, we previously reported gesture deficits in 40% of schizophrenia patients irrespective of the gesture content. However, these findings were based on normative data from an older control group. Hence, we now aimed at determining cut-off scores in an age and gender matched control group. Furthermore, we wanted to explore whether gesture categories are differentially affected in Schizophrenia. Gesture performance data of 30 schizophrenia patients and data from 30 matched controls were compared. Categories included meaningless, intransitive (communicative) and transitive (object related) hand gestures, which were either imitated or pantomimed, i.e. produced on verbal command. Cut-off scores of the age matched control group were higher than the previous cut-off scores in an older control group. An ANOVA tested effects of group, domain (imitation or pantomime), and semantic category (meaningless, transitive or intransitive), as well as their interaction. According to the new cut-off scores, 67% of the schizophrenia patients demonstrated gestural deficits. Patients performed worse in all gesture categories, however meaningless gestures on verbal command were particularly impaired (p = 0.008). This category correlated with poor frontal lobe function (p < 0.001). In conclusion, gestural deficits in schizophrenia are even more frequent than previously reported. Gesture categories that pose higher demands on planning and selection such as pantomime of meaningless gestures are predominantly affected and associated with the well-known frontal lobe dysfunction.
Resumo:
The paper deals with the development of a general as well as integrative and holistic framework to systematize and assess vulnerability, risk and adaptation. The framework is a thinking tool meant as a heuristic that outlines key factors and different dimensions that need to be addressed when assessing vulnerability in the context of natural hazards and climate change. The approach underlines that the key factors of such a common framework are related to the exposure of a society or system to a hazard or stressor, the susceptibility of the system or community exposed, and its resilience and adaptive capacity. Additionally, it underlines the necessity to consider key factors and multiple thematic dimensions when assessing vulnerability in the context of natural and socio-natural hazards. In this regard, it shows key linkages between the different concepts used within the disaster risk management (DRM) and climate change adaptation (CCA) research. Further, it helps to illustrate the strong relationships between different concepts used in DRM and CCA. The framework is also a tool for communicating complexity and stresses the need for societal change in order to reduce risk and to promote adaptation. With regard to this, the policy relevance of the framework and first results of its application are outlined. Overall, the framework presented enhances the discussion on how to frame and link vulnerability, disaster risk, risk management and adaptation concepts.
Resumo:
Experts working on behalf of international development organisations need better tools to assist land managers in developing countriesmaintain their livelihoods, as climate change puts pressure on the ecosystemservices that they depend upon. However, current understanding of livelihood vulnerability to climate change is based on a fractured and disparate set of theories andmethods. This reviewtherefore combines theoretical insights from sustainable livelihoods analysis with other analytical frameworks (including the ecosystem services framework, diffusion theory, social learning, adaptive management and transitions management) to assess the vulnerability of rural livelihoods to climate change. This integrated analytical framework helps diagnose vulnerability to climate change,whilst identifying and comparing adaptation options that could reduce vulnerability, following four broad steps: i) determine likely level of exposure to climate change, and how climate change might interact with existing stresses and other future drivers of change; ii) determine the sensitivity of stocks of capital assets and flows of ecosystem services to climate change; iii) identify factors influencing decisions to develop and/or adopt different adaptation strategies, based on innovation or the use/substitution of existing assets; and iv) identify and evaluate potential trade-offs between adaptation options. The paper concludes by identifying interdisciplinary research needs for assessing the vulnerability of livelihoods to climate change.
Resumo:
In natural hazard research, risk is defined as a function of (1) the probability of occurrence of a hazardous process, and (2) the assessment of the related extent of damage, defined by the value of elements at risk exposed and their physical vulnerability. Until now, various works have been undertaken to determine vulnerability values for objects exposed to geomorphic hazards such as mountain torrents. Yet, many studies only provide rough estimates for vulnerability values based on proxies for process intensities. However, the deduced vulnerability functions proposed in the literature show a wide range, in particular with respect to medium and high process magnitudes. In our study, we compare vulnerability functions for torrent processes derived from studies in test sites located in the Austrian Alps and in Taiwan. Based on this comparison we expose needs for future research in order to enhance mountain hazard risk management with a particular focus on the question of vulnerability on a catchment scale.
Resumo:
Partial migration, in which a fraction of a population migrate and the rest remain resident, occurs in an extensive range of species and can have powerful ecological consequences. The question of what drives differences in individual migratory tendency is a contentious one. It has been shown that the timing of partial migration is based upon a trade-off between seasonal fluctuations in predation risk and growth potential. Phenotypic variation in either individual predation risk or growth potential should thus mediate the strength of the trade-off and ultimately predict patterns of partial migration at the individual level (i.e. which individuals migrate and which remain resident). We provide cross-population empirical support for the importance of one component of this model—individual predation risk—in predicting partial migration in wild populations of bream Abramis brama, a freshwater fish. Smaller, high-risk individuals migrate with a higher probability than larger, low-risk individuals, and we suggest that predation risk maintains size-dependent partial migration in this system.
Resumo:
The southernmost European natural and planted pine forests are among the most vulnerable areas to warming-induced drought decline. Both drought stress and management factors (e.g., stand origin or reduced thinning) may induce decline by reducing the water available to trees but their relative importances have not been properly assessed. The role of stand origin - densely planted vs. naturally regenerated stands - as a decline driver can be assessed by comparing the growth and vigor responses to drought of similar natural vs. planted stands. Here, we compare these responses in natural and planted Black pine (Pinus nigra) stands located in southern Spain. We analyze how environmental factors - climatic (temperature and precipitation anomalies) and site conditions - and biotic factors - stand structure (age, tree size, density) and defoliation by the pine processionary moth - drive radial growth and crown condition at stand and tree levels. We also assess the climatic trends in the study area over the last 60 years. We use dendrochronology, linear mixed-effects models of basal area increment and structural equation models to determine how natural and planted stands respond to drought and current competition intensity. We observed that a temperature rise and a decrease in precipitation during the growing period led to increasing drought stress during the late 20th century. Trees from planted stands experienced stronger growth reductions and displayed more severe crown defoliation after severe droughts than those from natural stands. High stand density negatively drove growth and enhanced crown dieback, particularly in planted stands. Also pine processionary moth defoliation was more severe in the growth of natural than in planted stands but affected tree crown condition similarly in both stand types. In response to drought, sharp growth reduction and widespread defoliation of planted Mediterranean pine stands indicate that they are more vulnerable and less resilient to drought stress than natural stands. To mitigate forest decline of planted stands in xeric areas such as the Mediterranean Basin, less dense and more diverse stands should be created through selective thinning or by selecting species or provenances that are more drought tolerant. (C) 2013 Elsevier B.V. All rights reserved.