759 resultados para Clock chime music.
Resumo:
Mozart’s wind music occupies a rather small space in the overall scope of his compositional output, numbering a total of ten works. Yet when viewed in the larger context of Mozart’s life, the wind music was written over the span of nine years, encompassing a large period from his youth up to his last decade in Vienna. Ranging from the simple divertimenti (K. 166 and 186) through the Tafelmusik (K. 213, 240, 252, 253 and 270) and finally culminating in the three Serenades (K. 361, 375 and 388), the wind music demonstrates Mozart’s maturation in wind writing, and also serves to illustrate the evolution in his use of sonata forms.
Resumo:
“Music at the Fair!” gives the daily musical programs for The Trans-Mississippi and International Exposition, held in Omaha, Nebraska, June 1 through October 31, 1898. The Trans-Mississippi and International Exposition brought an unprecedented array of local, national, and international musical acts to Omaha, NE in 1898. This served to designate Omaha, "the gateway to the west" as a musical hub, as well as to incite musical excitement in the region. Some of the more popular acts featured were the Theodore Thomas Orchestra, the U.S. Marine Band, and the Apollo Club of Chicago. Many more groups and their musical programs can be found within the pages of this site. The “Music at the Fair!” website was created by Grace Carey, and last revised on May 19, 2006.It is the result of a two- year research grant funded by an Undergraduate Creative Activities and Research Experiences (UCARE) grant through the University of Nebraska at Lincoln. It is an extension of an ongoing project on music at the TME by Music Professor Peter Lefferts. The primary sources of information for the site are the following newspapers from June – November 1898: The Omaha Daily Bee, the Omaha Evening Bee, and the Omaha World Herald, and the the official programs of the fair located in the archives at the Omaha Public Library. I would like to thank the helpful staff at the Nebraska State Historical Society and the downtown branch of the Omaha Public Library. Site Creator: Grace Carey Project Advisor: Peter Lefferts, Professor of Music History at the University of Nebraska, Lincoln The linked “Document” is a flat PDF version of the interactive website. To download the fully interactive html version, click on the “Related file” to download the zipped folder. When unzipped, click on the file named “index” to enter the website.
Resumo:
With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America
Resumo:
Synchronous telecommunication networks, distributed control systems and integrated circuits have its accuracy of operation dependent on the existence of a reliable time basis signal extracted from the line data stream and acquirable to each node. In this sense, the existence of a sub-network (inside the main network) dedicated to the distribution of the clock signals is crucially important. There are different solutions for the architecture of the time distribution sub-network and choosing one of them depends on cost, precision, reliability and operational security. In this work we expose: (i) the possible time distribution networks and their usual topologies and arrangements. (ii) How parameters of the network nodes can affect the reachability and stability of the synchronous state of a network. (iii) Optimizations methods for synchronous networks which can provide low cost architectures with operational precision, reliability and security. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.
Resumo:
We examined the effects of listening to music on attentional focus, rating of perceived exertion (RPE), pacing strategy and performance during a simulated 5-km running race. 15 participants performed 2 controlled trials to establish their best baseline time, followed by 2 counterbalanced experimental trials during which they listened to music during the first (M-start) or the last (M-finish) 1.5 km. The mean running velocity during the first 1.5 km was significantly higher in M-start than in the fastest control condition (p < 0.05), but there was no difference in velocity between conditions during the last 1.5 km (p > 0.05). The faster first 1.5 m in M-start was accompanied by a reduction in associative thoughts compared with the fastest control condition. There were no significant differences in RPE between conditions (p > 0.05). These results suggest that listening to music at the beginning of a trial may draw the attentional focus away from internal sensations of fatigue to thoughts about the external environment. However, along with the reduction in associative thoughts and the increase in running velocity while listening to music, the RPE increased linearly and similarly under all conditions, suggesting that the change in velocity throughout the race may be to maintain the same rate of RPE increase.
Resumo:
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 +/- 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p < .0001) in SAT in comparison to VAT was PER1 of female (372%) and male (326%) subjects. Different patterns of expression between the AM and PM periods were observed, in particular REV-ERBa, which was reduced (p < .05) at the PM period in SAT and VAT of both women and men (women: similar to 53% lower; men: similar to 78% lower), whereas CLOCK expression was not altered. Relationships between clock genes were different in SAT vs. VAT. BMI was negatively correlated with SATPER1 (r = -.549; p = .001) and SATPER2 (r = -.613; p = .0001) and positively with VATCLOCK (r = .541; p = .001) and VATBMAL1 (r = .468; p = .007) only in women. These data suggest that the circadian clock machinery of adipose tissue depots differs between female and male subjects, with a sex-specific effect observed for some genes. BMI correlated with clock genes, but at this moment it is not possible to establish the cause-effect relationship. (Author correspondence: mzanquetta@gmail.com)
Resumo:
The development of new statistical and computational methods is increasingly making it possible to bridge the gap between hard sciences and humanities. In this study, we propose an approach based on a quantitative evaluation of attributes of objects in fields of humanities, from which concepts such as dialectics and opposition are formally defined mathematically. As case studies, we analyzed the temporal evolution of classical music and philosophy by obtaining data for 8 features characterizing the corresponding fields for 7 well-known composers and philosophers, which were treated with multivariate statistics and pattern recognition methods. A bootstrap method was applied to avoid statistical bias caused by the small sample data set, with which hundreds of artificial composers and philosophers were generated, influenced by the 7 names originally chosen. Upon defining indices for opposition, skewness and counter-dialectics, we confirmed the intuitive analysis of historians in that classical music evolved according to a master apprentice tradition, while in philosophy changes were driven by opposition. Though these case studies were meant only to show the possibility of treating phenomena in humanities quantitatively, including a quantitative measure of concepts such as dialectics and opposition, the results are encouraging for further application of the approach presented here to many other areas, since it is entirely generic.
Resumo:
Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity.
Resumo:
Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells, subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.
Resumo:
Electromagnetic spectrum can be identified as a resource for the designer, as well as for the manufacturer, from two complementary points of view: first, because it is a good in great demand by many different kind of applications; second, because despite its scarce availability, it may be advantageous to use more spectrum than necessary. This is the case of Spread-Spectrum Systems, those systems in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. Part I of this dissertation deals with Spread-Spectrum Clock Generators (SSCG) aiming at reducing Electro Magnetic Interference (EMI) of clock signals in integrated circuits (IC) design. In particular, the modulation of the clock and the consequent spreading of its spectrum are obtained through a random modulating signal outputted by a chaotic map, i.e. a discrete-time dynamical system showing chaotic behavior. The advantages offered by this kind of modulation are highlighted. Three different prototypes of chaos-based SSCG are presented in all their aspects: design, simulation, and post-fabrication measurements. The third one, operating at a frequency equal to 3GHz, aims at being applied to Serial ATA, standard de facto for fast data transmission to and from Hard Disk Drives. The most extreme example of spread-spectrum signalling is the emerging ultra-wideband (UWB) technology, which proposes the use of large sections of the radio spectrum at low amplitudes to transmit high-bandwidth digital data. In part II of the dissertation, two UWB applications are presented, both dealing with the advantages as well as with the challenges of a wide-band system, namely: a chaos-based sequence generation method for reducing Multiple Access Interference (MAI) in Direct Sequence UWB Wireless-Sensor-Networks (WSNs), and design and simulations of a Low-Noise Amplifier (LNA) for impulse radio UWB. This latter topic was studied during a study-abroad period in collaboration with Delft University of Technology, Delft, Netherlands.
Strategy as a matter of beliefs: the recorded music industry reinventing itself by rethinking itself
Resumo:
Managerial and organizational cognition studies the ways cognitions of managers in groups, organizations and industries shape their strategies and actions. Cognitions refer to simplified representations of managers’ internal and external environments, necessary to cope with the rich, ambiguous information requirements that characterize strategy making. Despite the important achievements in the field, many unresolved puzzles remain as to this process, particular as to the cognitive factors that condition actors in framing a response to a discontinuity, how actors can change their models in the face of a discontinuity, and the reciprocal relation between cognition and action. I leverage on the recent case of the recorded music industry in the face of the digital technology to study these issues, through a strategy-oriented study of the way early response to the discontinuity was constructed and of the subsequent evolution of this response. Through a longitudinal historical and cognitive analysis of actions and cognitions at both the industry and firm-level during the period in which the response took place (1999-2010), I gain important insights on the way historical beliefs in the industry shaped early response to the digital disruption, on the role of outsiders in promoting change through renewed vision about important issues, and on the reciprocal relationship between cognitive and strategic change.
Resumo:
In this work, we consider a simple model problem for the electromagnetic exploration of small perfectly conducting objects buried within the lower halfspace of an unbounded two–layered background medium. In possible applications, such as, e.g., humanitarian demining, the two layers would correspond to air and soil. Moving a set of electric devices parallel to the surface of ground to generate a time–harmonic field, the induced field is measured within the same devices. The goal is to retrieve information about buried scatterers from these data. In mathematical terms, we are concerned with the analysis and numerical solution of the inverse scattering problem to reconstruct the number and the positions of a collection of finitely many small perfectly conducting scatterers buried within the lower halfspace of an unbounded two–layered background medium from near field measurements of time–harmonic electromagnetic waves. For this purpose, we first study the corresponding direct scattering problem in detail and derive an asymptotic expansion of the scattered field as the size of the scatterers tends to zero. Then, we use this expansion to justify a noniterative MUSICtype reconstruction method for the solution of the inverse scattering problem. We propose a numerical implementation of this reconstruction method and provide a series of numerical experiments.