985 resultados para Climatic Changes
Resumo:
The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.
Resumo:
Peat plateaus are widespread at high northern latitudes and are important soil organic carbon reservoirs. A warming climate can cause either increased ground subsidence (thermokarst) resulting in lake formation or increased drainage as the permafrost thaws. A better understanding of spatiotemporal variations in these landforms in relation to climate change is important for predicting the future thawing permafrost carbon feedback. In this study, dynamics in thermokarst lake extent during the last 35-50 years has been quantified through time series analysis of aerial photographs and high-resolution satellite images (IKONOS/QuickBird) in three peat plateau complexes, spread out across the northern circumpolar region along a climatic and permafrost gradient. From the mid-1970s until the mid-2000s there has been an increase in mean annual air temperature, winter precipitation, and ground temperature in all three study areas. The two peat plateaus located in the continuous and discontinuous permafrost zones, respectively, where mean annual air temperatures are below -5°C and ground temperatures are -2°C or colder, have experienced small changes in thermokarst lake extent. In the peat plateau located in the sporadic permafrost zone where the mean annual air temperature is around -3°C, and the ground temperature is close to 0°C, lake drainage and infilling with fen vegetation has been extensive and many new thermokarst lakes have formed. In a future progressively warmer and wetter climate permafrost degradation can cause significant impacts on landscape composition and greenhouse gas exchange also in areas with extensive peat plateaus, which presently still experience stable permafrost conditions.
Resumo:
Late Cenozoic benthic foraminiferal faunas from the Caribbean Deep Sea Drilling Project (DSDP) Site 502 (3052 m) and East Pacific DSDP Site 503 (3572 m) were analyzed to interpret bottom-water masses and paleoceanographic changes occurring as the Isthmus of Panama emerged. Major changes during the past 7 Myr occur at 6.7-6.2, 3.4, 2.0, and 1.1 Ma in the Caribbean and 6.7-6.4, 4.0-3.2, 2.1, 1.4, and 0.7 Ma in the Pacific. Prior to 6.7 Ma, benthic foraminiferal faunas at both sites indicate the presence of Antarctic Bottom Water (AABW). After 6.7 Ma benthic foraminiferal faunas indicate a shift to warmer water masses: North Atlantic Deep Water (NADW) in the Caribbean and Pacific Deep Water (PDW) in the Pacific. Flow of NADW may have continued across the rising sill between the Caribbean and Pacific until 5.6 Ma when the Pacific benthic foraminiferal faunas suggest a decrease in bottom-water temperatures. After 5.6 Ma deep-water to intermediate-water flow across the sill appears to have stopped as the bottom-water masses on either side of the sill diverge. The second change recorded by benthic foraminiferal faunas occurs at 3.4 Ma in the Caribbean and 4.0-3.2 Ma in the Pacific. At this time the Caribbean is flooded with cold AABW, which is either gradually warmed or is replaced by Glacial Bottom Water (GBW) at 2.0 Ma and by NADW at 1.1 Ma. These changes are related to global climatic events and to the depth of the sill between the Caribbean and Atlantic rather than the rising Isthmus of Panama. Benthic foraminiferal faunas at East Pacific Site 503 indicate a gradual change from cold PDW to warmer PDW between 4.0 and 3.2 Ma. The PDW is replaced by the warmer, poorly oxygenated PIW at 2.1 Ma. Although the PDW affects the faunas during colder intervals between 1.4 and 0.7 Ma, the PIW remains the principal bottom-water mass in the Guatemala Basin of the East Pacific.
Resumo:
Probabilistic climate data have become available for the first time through the UK Climate Projections 2009, so that the risk of tree growth change can be quantified. We assess the drought risk spatially and temporally using drought probabilities and tree species vulnerabilities across Britain. We assessed the drought impact on the potential yield class of three major tree species (Picea sitchensis, Pinus sylvestris, and Quercus robur) which presently cover around 59% (400,700 ha) of state-managed forests, across lowland and upland sites. Here we show that drought impacts result mostly in reduced tree growth over the next 80 years when using b1, a1b and a1fi IPCC emissions scenarios. We found a maximum reduction of 94% but also a maximum increase of 56% in potential stand yield class in the 2080s from the baseline climate (1961-1990). Furthermore, potential production over the national forest estate for all three species in the 2080s may decrease due to drought by 42% in the lowlands and 32% in the uplands in comparison to the baseline climate. Our results reveal that potential tree growth and forest production on the national forest estate in Britain is likely to reduce, and indicate where and when adaptation measures are required. Moreover, this paper demonstrates the value of probabilistic climate projections for an important economic and environmental sector.
Resumo:
The impact of climate change and its relation with evapotranspiration was evaluated in the Duero River Basin (Spain). The study shows possible future situations 50 yr from now from the reference evapotranspiration (ETo). The maximum temperature (Tmax), minimum temperature (Tmin), dew point (Td), wind speed (U) and net radiation (Rn) trends during the 1980–2009 period were obtained and extrapolated with the FAO-56 Penman-Montheith equation to estimate ETo. Changes in stomatal resistance in response to increases in CO2 were also considered. Four scenarios were done, taking the concentration of CO2 and the period analyzed (annual or monthly) into consideration. The scenarios studied showed the changes in ETo as a consequence of the annual and monthly trends in the variables Tmax, Tmin, Td, U and Rn with current and future CO2 concentrations (372 ppm and 550 ppm). The future ETo showed increases between 118 mm (11 %) and 55 mm (5 %) with respect to the current situation of the river basin at 1042 mm. The months most affected by climate change are May, June, July, August and September, which also coincide with the maximum water needs of the basin’s crops
Resumo:
Para dar suporte ao atual debate sobre as consequências climáticas da liberação antropogênica de CO2 na atmosfera, o refinamento do conhecimento sobre mudanças climáticas e oceanográficas no passado é necessário. A Circulação de Revolvimento Meridional do Atlântico (CRMA) tem papel fundamental na oceanografia e clima das áreas sob influência do Oceano Atlântico, controlando diretamente a estratificação e distribuição de massas d\'água, a quantidade de calor transportada pelo oceano e os ciclo e armazenamento de compostos químicos, como o CO2 em mar profundo. A formação e circulação da Água Intermediária Antártica (AIA), envolvida no transporte de calor e sal para o giro subtropical do Hemisfério Sul e nas teleconexões climáticas entre altas e baixas latitudes, é componente importante do ramo superior da CRMA. A reconstrução de propriedades de massas de água intermediárias é, portanto, importante para a compreensão dos sistemas de retroalimentação entre oceano-clima. No entanto, informações quanto a evolução da AIA continuam limitadas. Oscilações da CRMA e consequentes mudanças na distribuição de calor tem implicações importantes para o clima Sul Americano, influenciando a disponibilidade de umidade para o Sistema de Monções Sul Americano (SMSA), via temperatura da superfície marinha e posicionamento da Zona de Convergência Intertropical. Neste trabalho nós reconstruímos a assinatura isotópica da AIA durante os estágios isotópicos marinhos 2 e 3 (41-12 cal ka AP) usando isótopos de carbono e oxigênio de foraminíferos bentônicos (gêneros Cibicidoides e Uvigerina) de um testemunho de sedimentos marinhos datados por radiocarbono (1100 m de profundidade e a 20°S na costa do Brasil). Concluímos que propriedades físicas e químicas da AIA mudaram durante os estadiais Heinrich 3 e 4, provavelmente como consequência de enfraquecimento da CRMA durante estes períodos. Também reconstruímos as condições continentais do leste brasileiro entre o último máximo glacial e a deglaciação (23-12 cal ka AP) baseadas em razões Ti/Ca de nosso testemunho de sedimentos marinhos como indicadoras de aporte terrígeno do Rio Doce. A maior parte da chuva que cai na Bacia do Rio Doce está relacionada a atividade do SMAS. Nosso registro de Ti/Ca em conjunto com \'\'delta\' POT.18\'O de espeleotemas da Caverna Lapa Sem Fim, também no leste do Brasil, sugere diminuição marcante da chuva durante o interestadial Bølling-Allerød, provavelmente relacionada a enfraquecimento do SMAS. Ademais comparamos as razões de Ti/Ca com dados de saída da rodada SYNTRACE do modelo climático CCSM3 com forçantes transientes para a última deglaciação. Os registros geoquímicos e a saída do modelo mostram resultados consistentes entre si e sugerem que o leste da América do Sul passou pelo seu período mais seco de toda a última deglaciação durante o interestadial Bølling-Allerød, provavelmente relacionado ao enfraquecimento do SMAS.
Resumo:
The steep environmental gradients of mountain ecosystems over short distances reflect large gradients of several climatic parameters and hence provide excellent possibilities for ecological research on the effects of environmental change. To gain a better understanding of the dynamics of abiotic and biotic parameters of mountain ecosystems, long-term records are required since permanent plots in mountain regions cover in the best case about 50 - 70 years. In order to extend investigations of ecological dynamics beyond these temporal limitations of permanent plots, paleoecological approaches can be used if the sampling resolution can be adapted to ecological research questions, e.g. a sample every 10 years. Paleoecological studies in mountain ecosystems can provide new ecological insights through the combination of different spatial and temporal scales. [f we thus improve our understanding of processes across both steep environmental gradients and different time scales, we may be able to better estimate ecosystem responses to current and future environmental change (Ammann et al. 1993; Lotter et al. 1997). The complexity of ecological interactions in mountain regions forces us to concentrate on a number of sub-systems - without losing sight of the wider context. Here, we summarize a few case studies on the effects of Holocene climate change and disturbance on the vegetation of the Western Alps. To categorize the main response modes of vegetation to climatic change and disturbance in the Alps we use three classes of ecological behaviour: "resilience", "adjustment", and "vulnerability", We assume a resilient (or elastic) behaviour if vegetation is able to recover to its former state, regaining important ecosystem characteristics, such as floristic composition, biodiversity, species abundances, and biomass (e.g. Küttel 1990; Aber and Melillo 199 1). Conversely, vegetation displacements may occur in response to climatic change and/or disturbance. In some cases, this may culminate in irreversible large-scale processes such as species and/or community extinctions. Such drastic developments indicate high ecosystem vulnerability (or inelasticity or instability, for detailed definitions see Küttel 1990; Aber and Melillo 199 1) to climatic change and/or disturbance. In this sense, the "vulnerability" (or instability) of an ecosystem is expressed by the degree of failure to recover to the original state before disturbance and/or climatic change. Between these two extremes (resilience vs. vulnerability), ecosystem adjustments to climatic change and/or disturbance may occur, including the appearance of new and/or the disappearance of old species. The term "adjustment" is hence used to indicate the response of vegetational communities, which adapted to new environmental conditions without losing their main character. For forest ecosystems, we assume vegetational adjustments (rather than vulnerability) if the dominant (or co-dominant) tree species are not outnumbered or replaced by formerly unimportant plant species or new invaders. Adaptation as a genetic process is not discussed here and will require additional pbylogeographical studies (that incorporate the analysis of ancient DNA) in order to fully understand the distributions of ecotypes.
Resumo:
We compare eight pollen records reflecting climatic and environmental change from the tropical Andes. Our analysis focuses on the last 50 ka, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations, and precipitation change. Our analysis focuses on the signature of millennial-scale variability in the tropical Andes, in particular, Heinrich stadials and Greenland interstadials. We identify rapid responses of the tropical vegetation to this climate variability, and relate differences between sites to moisture sources and site sensitivity.
Resumo:
The deep-sea cores M 16415-2 and M 16416-2 at about 9°N off Sierra Leone were analysed palynologically for the time interval 140,000-70,000 yr B.P. Results were presented in absolute (pollen concentration and pollen influx) and relative diagrams (pollen percentage). In a previous study it was evidenced that in northwest Africa pollen is mainly transported to the Atlantic by wind, so that the efficiency of aeolian pollen transport (pollen flux) could be used to evaluate changes in the intensity of the northeast trade winds. The glacial episodes (represented by the oxygen isotope stages 6 and 4) are characterized by strong northeast trade winds, whereas the last interglacial (stage 5) is characterized by weak trade winds. The pollen influx diagram shows that the intensity of the trade winds increased slightly during the relatively cool intervals of stage 5 (viz. 5.4 and 5.2). Tropical forest had maximally expanded around 124,000 yr B.P. (stage 5.5), around 98,000 yr B.P. (transition of stage 5.3 to 5.2), and around 70,000 yr B.P. (first part of stage 4): an increasing delay of the response of tropical forest to global intervals with maximum temperature is apparent during the last interglacial. As tropical forests need continuous humidity, the record of tropical forest monitors changes in climatic humidity south of the Sahara. During the last interglacial, the southern boundary of the Sahara shifted only little: expansions and contractions of the tropical forest area are correlated with contra-oscillations of the grass-dominated savanna zone. Great latitudinal shifts of the desert savanna boundary, on the contrary, occurred during the penultimate glacial interglacial transition (around 128,000 yr B.P.) to the north, and during the last interglacial-glacial transition (around 65,000 yr B.P.) to the south.
Resumo:
The Australian and zone harbours a surprising number of parthenogenetic organisms. including the well known case of the grasshopper Warramaba virgo. Less well known is the case of the stick insects of the Sipyloidea complex, which. despite its presence in the literature for over 15 years. has gone entirely unnoticed by workers in the field. We draw attention to the remarkable similarities between the evolution of parthenogenesis in Warramaba and Sipyloidea and analyse the geographic distributions of parthenogenetic and sexual forms with respect to six Climatic variables. We provide evidence that a combination of Climatic and vegetative barriers are responsible for the current distribution patterns in these taxa. Comparisons are also made with patterns of geographic parthenogenesis in lizards of the Heteronotia binoei complex. In general. there has been a strong tendency for parthenogenesis to originate via hybridization in the western part of the and zone with subsequent eastward spread throughout mulga woodlands and mallee shrublands where rainfall is both low and aseasonal. We propose that the hybridization events leading to parthenogenesis in these diverse taxa were driven by a common biogeographic process - that is, by range shifts associated with changes in aridity during the late Pleistocene.
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of 'teleconnection' between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20-10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated C-14 ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
There are many geochemical reconstructions of environmental change in the mid and high latitudes but relatively few in the tropical latitudes, despite their considerable potential for reconstructing environmental processes that cannot be identified using more traditional proxies. Here we present one reconstruction of environmental change for the tropics. This reconstruction covers the past 50 ka using a suite of geochemical data from the high-resolution sequence of Lynch's Crater in northeast Queensland, Australia, a region highly sensitive to El Nino-Southern Oscillation (ENSO) activity. The 23 major oxides and trace elements measured Could be summarised by extracting three axes using principal components analysis (accounting for 72% of the variability). The data indicate that the greatest variability in the geochemical data accounted for erosional activity within the catchment that was associated with past changes in the frequency of ENSO activity (though this was less sensitive during wetter periods, probably as a result of buffering by high vegetation cover). The remaining variability was largely explained by elements that form complexes with organic compounds (e.g., humic acids) and those that are important nutrients for specific vegetation types (and therefore a measure of vegetation distribution). For more detailed reconstructions, further work is required to disentangle the complex controls of clements within sedimentary sequences. (c) 2005 Elsevier B.V. All rights reserved.