988 resultados para Chromosomal Radiosensitivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The estrogen-dependent and tissue-specific regulation of the Xenopus laevis vitellogenin gene B1 promoter has been studied by lipid-mediated DNA transfer into Xenopus hepatocytes in primary culture. Hepatocytes achieve an efficient hormonal control of this promoter through a functional interaction between the estrogen responsive elements and a promoter proximal region upstream of the TATA box, which is characterized by a high density of binding sites for the transcription factors CTF/NF-1, C/EBP and HNF3. DNA accessibility to restriction enzymes within the chromosomal copy of the vitellogenin gene B1 promoter shows that the estrogen responsive unit and the promoter proximal region are sensitive to digestion in uninduced and estrogen-induced hepatocytes but not in erythrocyte nuclei. Together, these findings support the notion that chromatin configuration as well as the interplay of promoter elements mediate proper hormone-dependent and tissue-specific expression of the B1 vitellogenin gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasound scans in the mid trimester of pregnancy are now a routine part of antenatal care in most European countries. With the assistance of Registries of Congenital Anomalies a study was undertaken in Europe. The objective of the study was to evaluate prenatal detection of congenital heart defects (CHD) by routine ultrasonographic examination of the fetus. All congenital malformations suspected prenatally and all congenital malformations, including chromosome anomalies, confirmed at birth were identified from the Congenital Malformation Registers, including 20 registers from the following European countries: Austria, Croatia, Denmark, France, Germany, Italy, Lithuania, Spain, Switzerland, The Netherlands, UK and Ukrainia. These registries follow the same methodology. The study period was 1996-1998, 709 030 births were covered, and 8126 cases with congenital malformations were registered. If more than one cardiac malformation was present the case was coded as complex cardiac malformation. CHD were subdivided into 'isolated' when only a cardiac malformation was present and 'associated' when at least one other major extra cardiac malformation was present. The associated CHD were subdivided into chromosomal, syndromic non-chromosomal and multiple. The study comprised 761 associated CHD including 282 cases with multiple malformations, 375 cases with chromosomal anomalies and 104 cases with non-chromosomal syndromes. The proportion of prenatal diagnosis of associated CHD varied in relation to the ultrasound screening policies from 17.9% in countries without routine screening (The Netherlands and Denmark) to 46.0% in countries with only one routine fetal scan and 55.6% in countries with two or three routine fetal scans. The prenatal detection rate of chromosomal anomalies was 40.3% (151/375 cases). This rate for recognized syndromes and multiply malformed with CHD was 51.9% (54/104 cases) and 48.6% (137/282 cases), respectively; 150/229 Down syndrome (65.8%) were livebirths. Concerning the syndromic cases, the detection rate of deletion 22q11, situs anomalies and VATER association was 44.4%, 64.7% and 46.6%, respectively. In conclusion, the present study shows large regional variations in the prenatal detection rate of CHD with the highest rates in European regions with three screening scans. Prenatal diagnosis of CHD is significantly higher if associated malformations are present. Cardiac defects affecting the size of the ventricles have the highest detection rate. Mean gestational age at discovery was 20-24 weeks for the majority of associated cardiac defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pediatric follicular lymphoma (FL) is a rare disease that differs from its adult counterpart both genetically and clinically. Excluding pediatric FL with IRF4-translocation, the genetic events associated with pediatric FL have not yet been defined. Objectives: The aim of this study was to perform a complete genetic characterization of IRF4-translocation negative pediatric follicular lymphomas to elucidate the genetic profile of these rare pediatric cases and determine common genetic alterations that could be associated to this phenotype. Design/Methods: We applied array-comparative genomic hybridization and molecular inversion probe assay adapted to formalin-fixed paraffin-embedded tissues from 18 patients aged £18 years diagnosed with FL. With the exception of one case with only focal involvement by lymphoma, the tumor cell content exceeded 50% in the evaluable samples. Eleven of 18 patients were treated according to NHL-BFM group multicenter trials whereas the remaining according to different protocols. All lacked t(14;18) translocation. Mutational analysis of TNFRSF14 gene was performed in 17 cases. Results: Only six pediatric cases displayed chromosomal imbalances, with gain/amplification of 6pter-p24.3 (including IRF4) and deletion/ copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being the most frequent alterations. Sequencing of the candidate gene TNFRSF14 at 1p36.32 showed nine mutations in seven cases. Conclusion: Combination of molecular and genetic features differentiated a recurrent pattern of genomic imbalances as well as of TNFRSF14 mutations in pediatric FL which together with other genetic alterations distinguishes two subsets of pediatric follicular lymphomas. The first group shows genomic aberrations and is associated with more aggressive histopathologic and clinical features. The second group lacks genetic alterations detectable with the present approaches and is associated with a more limited disease. Despite the absence of genomic aberrations, these cases resembled FL by their histopathological features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied 5,449 cases of cleft lip (CL) with or without cleft palate (CL/P) identified between 1980 and 2000 from the EUROCAT network of 23 registers (nearly 6 million births) in 14 European countries. We investigated specific types of defects associated with clefts. Among CL/P cases (prevalence = 9.1 per 10,000), 1,996 (36.6%) affected only the lip (CL) and 3,453 (63.4%) involved CL and palate (CLP). A total of 3,860 CL/P cases (70.8%) occurred as isolated anomalies and 1,589 (29.2%) were associated with other defects such as multiple congenital anomalies of unknown origin (970), chromosomal (455) and recognized syndromes (164). Associated malformations were more frequent in infants who had CLP (34.0%) than in infants with CL only (20.8%). Among multi-malformed infants, 2 unrelated anomalies were found in 351 cases, 3 in 242 cases, and 4 or more in 377 cases. Among 5,449 CL/P cases, 4,719 were live births (LB) (86.6%), 203 stillbirths (SB) (3.7%), while 508 (9.3%) were terminations of pregnancy (ToP). CL/P occurred significantly more frequently in males (M/F = 1.70), especially among total isolated cases (M/F = 1.87) and CLP isolated cases (M/F = 1.92). The study confirmed that musculoskeletal, cardiovascular, and central nervous system defects are frequently associated with CL/P. An association with reduction anomalies of the brain was found. This association suggests that clinicians should seek to identify structural brain anomalies in these patients with CL/P as the potential functional consequences may be important for rehabilitation and clinical management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cereal cyst nematode (CCN, Heterodera avenae) and Hessian fly (HF, Mayetiola destructor) are two major pests affecting wheat crops worldwide including important cereal areas of Spain. Aegilops ventricosa and Ae. triuncialis were used as donors in a strategy to introduce resistance genes (RG) for these pests in hexaploid wheat (Triticum aestivum L.). Two 42 chromosomes introgression lines have been derived from Ae. ventricosa: H-93-8 and H-93-33 carrying genes Cre2 and H27 conferring resistance to CCN and HF, respectively. Line TR-3531 with 42 chromosomes has been derived from Ae. triuncialis and carries RGs conferring resistance for CCN (Cre7) and for HF (H30). Alien material has been incorporated in lines H-93 by chromosomal substitution and recombination, while in line TR-3531 homoeologous recombination affecting small DNA fragments has played a major role. It has been demonstrated that Cre2, Cre7, H27 and H30 are major single dominant genes and not allelic of other previously described RGs. Biochemical and molecular-biology studies of the defense mechanism triggered by Cre2 and Cre7 have revealed specific induction of peroxidase and other antioxidant enzymes. In parallel to these basic studies advanced lines carrying resistance genes for CNN and/or HF have been developed. Selection was done using molecular markers for eventually «pyramiding» resistance genes. Several isozyme and RAPD markers have been described and, currently, new markers based on transposable elements and NBS-LRR sequences are being developed. At present, two advanced lines have already been included at the Spanish Catalogue of Commercial Plant Varieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.