971 resultados para Chromosomal Instability
Resumo:
"Classification cancelled or changed to UNCLASSIFIED by authority of TIS Change Notice No. 1849 by ASB TISOR, date 8/14/55."
Resumo:
"Contract AT(30-1)2101."
Resumo:
pt. 1. Basic studies of rotating stall flow mechanisms.--pt. 2. Investigation of flow-instability sensing devices.
Resumo:
"Prepared for American Mathematical Society Meeting, Los Angeles, California, Nov. 27, 1954."
Resumo:
The focus of this paper is on the effect of gravity stretching on disturbed capillary jet instability. Break-up and droplet formation under low flows are simulated using finite difference solution of a one-dimensional approximation of disturbed capillary jet instability chosen from the work by Eggers and Dupont (J. Fluid Mech. 155 (1994) 289). Experiments were conducted using water and aqueous glycerol solutions to compare with simulations. We use a gravity parameter, G, which quantifies gravity stretching by relating flow velocity, orifice size and acceleration and is the reciprocal of the Fronde number. The optimum disturbance frequency Omega(opt) was found to be inversely proportional to G. However, this relationship appears to be complex for the range of G's investigated. At low G, the relationship between Omega(opt) and G appears to be linear but takes on a weakly decaying like trend as G increases. As flows are lowered, the satellite-free regime decreases, although experimental observation found that merging of main and satellite drops sometimes offset this effect to result in monodispersed droplet trains post break-up. Viscosity did not significantly affect the relationship between the disturbance frequency and G, although satellite drops could be seen more clearly close to the upper limit for instability at high G's. It is possible to define regimes of satellite formation under low flows by considering local wavenumbers at the point of instability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider plane waves propagating in quadratic nonlinear slab waveguides with nonlinear quasi-phase-matching gratings. We predict analytically and verify numerically the complete gain spectrum for transverse modulational instability, including hitherto undescribed higher-order gain bands. (C) 2004 Optical Society of America.
Finite element analysis of fault bend influence on stick-slip instability along an intra-plate fault
Resumo:
Earthquakes have been recognized as resulting from stick-slip frictional instabilities along the faults between deformable rocks. A three-dimensional finite-element code for modeling the nonlinear frictional contact behaviors between deformable bodies with the node-to-point contact element strategy has been developed and applied here to investigate the fault geometry influence on the nucleation and development process of the stick-slip instability along an intra-plate fault through a typical fault bend model, which has a pre-cut fault that is artificially bent by an angle of 5.6degrees at the fault center. The numerical results demonstrate that the geometry of the fault significantly affects nucleation, termination and restart of the stick-slip instability along the intra-plate fault, and all these instability phenomena can be well simulated using the current finite-element algorithm.
Resumo:
The convective instability of pore-fluid flow in inclined and fluid-saturated three-dimensional fault zones has been theoretically investigated in this paper. Due to the consideration of the inclined three-dimensional fault zone with any values of the inclined angle, it is impossible to use the conventional linear stability analysis method for deriving the critical condition (i.e., the critical Rayleigh number) which can be used to investigate the convective instability of the pore-fluid flow in an inclined three-dimensional fault zone system. To overcome this mathematical difficulty, a combination of the variable separation method and the integration elimination method has been used to derive the characteristic equation, which depends on the Rayleigh number and the inclined angle of the inclined three-dimensional fault zone. Using this characteristic equation, the critical Rayleigh number of the system can be numerically found as a function of the inclined angle of the three-dimensional fault zone. For a vertically oriented three-dimensional fault zone system, the critical Rayleigh number of the system can be explicitly derived from the characteristic equation. Comparison of the resulting critical Rayleigh number of the system with that previously derived in a vertically oriented three-dimensional fault zone has demonstrated that the characteristic equation of the Rayleigh number is correct and useful for investigating the convective instability of pore-fluid flow in the inclined three-dimensional fault zone system. The related numerical results from this investigation have indicated that: (1) the convective pore-fluid flow may take place in the inclined three-dimensional fault zone; (2) if the height of the fault zone is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone stabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; (3) if the thickness of the stratum is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone destabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; and that (4) the shape of the inclined three-dimensional fault zone may affect the convective instability of pore-fluid flow in the system. (C) 2004 Published by Elsevier B.V.
Resumo:
In order to investigate the chromosomal genotoxicity of nitrobenzene and benzonitrile, we studied the induction of micronuclei (MN) by these test compounds in V79 cells, as well as effects on the formation and stability of microtubules and on motor protein functions. No cytotoxicity was seen in V79 cell cultures in terms of Neutral red uptake after 18 h treatment with up to 1 mM nitrobenzene or 1 mM benzonitrile. Subsequently, a concentration range up to 100 muM was used in the experiments on induction of MN. Both test compounds exhibit a weak, but definitely positive test result compared to the solvent (DMSO) control. Minimal effect concentrations of nitrobenzene and benzonitrile appeared as low as 0.01 muM, and no-effect-concentrations were between 0.001 and 0.005 muM. Clearly enhanced MN rates were found at 0.1 muM and higher. Both, nitrobenzene and benzonitrile, induced mostly kinetochor (CREST)-positive micronuclei, thus characterising the chromosomal effects as aneugenic. In cell-free assays, a slight effect on tubulin assembly was observed at 1 mM nitrobenzene without addition of DMSO. Higher concentrations (5 mM) led to secondary effects. In presence of 1% DMSO, nitrobenzene exerted no detectable effect on tubulin assembly up to the solubility limit in water of about 15 mM. For benzonitrile in presence of DMSO, a clear dose-response of inhibition of tubulin assembly at 37degreesC was seen above the no-effect-concentration of 2 mM, with an IC50 of 13 mM and protein denaturation starting above a level of about 20 mM. The nature of the effects of nitrobenzene and benzonitrile on the association of tubulin to form microtubules was confirmed by electron microscopy. Treatment by either 5 mM nitrobenzene or 13 mM benzonitrile plus 1% DMSO left the microtubular structure intact whereas 5 mM nitrobenzene, in absence of DMSO, led to irregular cluster formations. The experiments demonstrate that both nitrobenzene and benzonitrile, in millimolar concentration ranges, may lead to interference with tubulin assembly in a cell-free system. The functionality of the tubulin-kinesin motor protein system was assessed using the microtubule gliding assay. Nitrobenzene affected the gliding velocity in a concentration-dependent manner, starting at about 7.5 muM and reaching complete inhibition of motility at 30 muM, whereas benzonitrile up to 200 muM did not affect the kinesin-driven gliding velocity. The micronucleus assay data demonstrate a chromosomal endpoint of genotoxicity of nitrobenzene and benzonitrile. Aneugenic effects of both compounds occur at remarkably low concentrations, with lowest-effect-concentrations being 0.1 muM. This points to the relevance of interactions with the cellular spindle apparatus.
Resumo:
Cells respond to genotoxic insults such as ionizing radiation by halting in the G(2) phase of the cell cycle. Delayed cell death (mitotic death) can occur when the cell is released from G(2), and specific spindle defects form endopolyploid cells (endoreduplication/tetraploidy). Enhanced G(2) chromosomal radiosensitivity has been observed in many cancers and genomic instability syndromes, and it is manifested by radiation-induced chromatid aberrations observed in lymphocytes of patients. Here we compare the G(2) chromosomal radiosensitivity in prostate patients with benign prostatic hyperplasia (BPH) or prostate cancer with disease-free controls. We also investigated whether there is a correlation between G(2) chromosomal radiosensitivity and aneuploidy (tetraploidy and endoreduplication), which are indicative of mitotic cell death. The G(2) assay was carried out on all human blood samples. Metaphase analysis was conducted on the harvested chromosomes by counting the number of aberrations and the mitotic errors (endoreduplication/tetraploidy) separately per 100 metaphases. A total of 1/14 of the controls were radiosensitive in G(2) compared to 6/15 of the BPH patients and 15/17 of the prostate cancer patients. Radiation-induced mitotic inhibition was assessed to determine the efficacy of G(2) checkpoint control in the prostate patients. There was no significant correlation of G(2) radiosensitivity scores and mitotic inhibition in BPH patients (P = 0.057), in contrast to prostate cancer patients, who showed a small but significant positive correlation (P = 0.029). Furthermore, there was no significant correlation between G(2) radiosensitivity scores of BPH patients and endoreduplication/ tetraploidy (P = 0.136), which contrasted with an extremely significant correlation observed in prostate cancer patients (P < 0.0001). In conclusion, cells from prostate cancer patients show increased sensitivity to the induction of G(2) aberrations from ionizing radiation exposure but paradoxically show reduced mitotic indices and aneuploidy as a function of aberration frequency.
Resumo:
The problem of asset price bubbles, and more generally of instability in the financial system, has been a matter of concern since the 1980s but has only recently moved to the center of the macroeconomic policy debate. The main concern with bubbles arises when they burst, imposing losses on investors holding the bubble assets and potentially on the financial institutions that have extended credit to them. Asset price volatility is an inevitable consequence of financial market liberalization and, in extreme cases, generates asset price bubbles, the bursting of which can impose substantial economic and social costs. Policy responses within the existing liberalized financial system face daunting levels of uncertainty and risk. Given the pattern of increasing asset market volatility over recent decades and the policy issues highlighted in this paper, the future looks uncertain. Another significant cycle of asset price movements, especially in one of the major economies, could see a fundamental revision of thinking about the costs and benefits of liberalized financial systems.
Resumo:
Background: Colorectal cancers (CRCs) may be categorised according to the degree of microsatellite instability (MSI) exhibited, as MSI-high (MSI-H), MSI-low (MSI-L), or microsatellite stable (MSS). MSI-H status confers a survival advantage to patients with sporadic CRC. Aims: To determine if low levels of MSI are related to the clinicopathological features and prognosis of sporadic stage C CRC. Patients: A total of 255 patients who underwent resection for sporadic stage C CRC were studied. No patient received chemotherapy. Minimum follow up was five years. Methods: DNA extracted from archival malignant and non-malignant tissue was amplified by polymerase chain reaction using a panel of 11 microsatellites. MSI-H was defined as instability at greater than or equal to40% of markers, MSS as no instability, and MSI-L as instability at >0% but,40% of markers. Patients with MSI-H CRC were excluded from analysis as they have previously been shown to have better survival. Results: Thirty three MSI-L and 176 MSS CRCs were identified. There was no difference in biological characteristics or overall survival of MSI-L compared with MSS CRC but MSI-L was associated with poorer cancer specific survival (hazard ratio 2.0 (95% confidence interval 1.1-3.6)). Conclusions: Sporadic MSI-L and MSS CRCs have comparable clinicopathological features. Further studies are required to assess the impact of MSI-L on prognosis.
Resumo:
Parental divorce is associated with problematic offspring adjustment, but the relation may be due to shared genetic or environmental factors. One way to test for these confounds is to study offspring of twins discordant for divorce. The current analyses used this design to separate the mechanisms responsible for the association between parental divorce, experienced either before or after the age of 16, and offspring well-being. The results were consistent with a causal role of divorce in earlier initiation of sexual intercourse and emotional difficulties, in addition to a greater probability of educational problems, depressed mood, and suicidal ideation. In contrast, the increased risk for cohabitation and earlier initiation of drug use was explained by selection factors, including genetic confounds.