924 resultados para Chlorophyll, fluorometric determination (Holm-Hansen et al., 1965)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age (T(C)DM). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, epsilon-Hf 9 to -28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, epsilon-Hf 11 to -28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ?Hf in its 1200-900 Ma rocks bounded on either side by positive epsilon-Hf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ~500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic the 1000-900 Ma collisional events in the Eastern Ghats-Rayner Province at the end of the 1300-1000 Ma assembly of Rodinia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollen analysis of samples taken from the core of the water well Fersina 2 (Adige Valley, Prov. Trento, NE Italy) did not reveal any indication of an interglacial or Holocene age of the uppermost 190 m in the sediment sequence deposited in the over-deepened Adige River Valley. The sediment sequence dates entirely from late-glacial times. Four radiocarbon ages of pieces of wood indicate that about 165 m of the upper part of the profile are of Younger Dryas age. The lower part of the sequence dates from the Allerød or Bølling/Allerød and a preceding cold phase, probably the Oldest Dryas. Accordingly the deposition of the sequence took about 2500 or 3500 years and was completed long before the onset of the Neolithic. Our results are in excellent agreement with findings in other formerly glaciated alpine valleys (e.g. the Traun, Salzach and Enns valleys in the Northern Alps). The final depth of the Fersina 2 well is 190 m. It is very likely that the sediment sequence found below this level in the nearby 423 m deep Fersina 1 well was also deposited after the deglaciation of the Adige Valley at the end of the last glacial period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence from the Irish Sea basin supports the existence of an abrupt rise in sea level (meltwater pulse) at 19,000 years before the present (B.P.). Climate records indicate a large reduction in the strength of North Atlantic Deep Water formation and attendant cooling of the North Atlantic at this time, indicating a source of the meltwater pulse from one or more Northern Hemisphere ice sheets.Warming of the tropical Atlantic and Pacific oceans and the Southern Hemisphere also began at 19,000 years B.P. These responses identify mechanisms responsible for the propagation of deglacial climate signals to the Southern Hemisphere and tropics while maintaining a cold climate in the Northern Hemisphere.