965 resultados para Chemical process
Resumo:
The bioethanol industry expects a huge expansion and new technologies are being implemented with the aim of optimizing the fermentation process. The behavior of cells of Saccharomyces cerevisiae immobilized in PVA-LentiKats, during the production of bioethanol in two reactor systems, was studied. The entrapped cell in LentiKats lenses showed a different profile using stirred tank reactor (STR) and packed column reactor (PCR). Low free cells accumulation in the medium was observed for the STR after 72 h of fermentation. On the other hand, no free cells accumulation was observed, probably due to the absence of mechanical agitation in PCR configuration. Better fermentation results were obtained working with STR (final cellular concentration = 13 g.L-1, Pf = 28 g.L-1, Qp = 1.17 g.L-1.h-1,and Yp/s = 0.3 g.g-1) in comparison to PCR (final cellular concentration = 11.4 g.L-1, Pf = 20 g.L-1, Qp = 0.83 g.L-1.h-1,and Yp/s = 0.25 g.g-1). Such results are probably due to the mechanical agitation of the medium provided by STR configuration, which permitted a better heat and mass transference.
Resumo:
Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.
Resumo:
This paper proposes an architecture for machining process and production monitoring to be applied in machine tools with open Computer numerical control (CNC). A brief description of the advantages of using open CNC for machining process and production monitoring is presented with an emphasis on the CNC architecture using a personal computer (PC)-based human-machine interface. The proposed architecture uses the CNC data and sensors to gather information about the machining process and production. It allows the development of different levels of monitoring systems with mininium investment, minimum need for sensor installation, and low intrusiveness to the process. Successful examples of the utilization of this architecture in a laboratory environment are briefly described. As a Conclusion, it is shown that a wide range of monitoring solutions can be implemented in production processes using the proposed architecture.
Resumo:
Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 A degrees C and at room temperature were used to apply coatings with 200 and 400 mu m nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 mu m and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 +/- A 4 MPa.
Resumo:
Shot peening is a cold-working mechanical process in which a shot stream is propelled against a component surface. Its purpose is to introduce compressive residual stresses on component surfaces for increasing the fatigue resistance. This process is widely applied in springs due to the cyclical loads requirements. This paper presents a numerical modelling of shot peening process using the finite element method. The results are compared with experimental measurements of the residual stresses, obtained by the X-rays diffraction technique, in leaf springs submitted to this process. Furthermore, the results are compared with empirical and numerical correlations developed by other authors.
Resumo:
The biological cause of Pork Stress syndrome, which leads to PSE (pale, soft, exudative) meat, is excessive release of Ca(2+) ions, which is promoted by a genetic mutation in the ryanodine receptors (RyR) located in the sarcoplasmic reticulum of the skeletal muscle cells. We examined the relationship between the formation of PSE meat under halothane treatment and heat stress exposure in chicken alpha RYR hot spot fragments. Four test groups were compared: 1) birds slaughtered without any treatment, i.e., the control group (C); 2) birds slaughtered immediately after halothane treatment (H); 3) birds slaughtered immediately after heat stress treatment (HS), and 4) birds exposed to halothane and to heat stress (H+HS), before slaughtering. Breast muscle mRNA was extracted, amplified by RT-PCR, and sequenced. PSE meat was evaluated using color determination (L*value). The most common alteration was deletion of a single nucleotide, which generated a premature stop codon, resulting in the production of truncated proteins. The highest incidence of nonsense transcripts came with exposure to halothane; 80% of these abnormal transcripts were detected in H and H+HS groups. As a consequence, the incidence of abnormal meat was highest in the H+HS group (66%). In HS, H, and C groups, PSE meat developed in 60, 50, and 33% of the samples, respectively. Thus, halothane apparently modulates alpha RYR gene expression in this region, and synergically with exposure to heat stress, causes Avian Stress syndrome, resulting in PSE meat in broiler chickens.
Resumo:
Three morphotypes of aguaje Mauritia flexuosa were tested, classified by the color of their mesocarpium: ""color"", ""shambo"" and ""amarillo"", collected from different areas near the city of Iquitos, Peru. Also, physical-chemical analyses of the mesocarpium were performed, such as the characterization of fatty acids by gas chromatography, determination of beta- carotene y alpha tocopherol by high efficiency liquid chromatography system in normal and reverse phase and the determination of oxidation induction time in the Rancimat apparatus. Proximate, mineral and fatty acid analyses were done on the seeds. The aguaje mesocarpium is rich in oleic oil (""amarillo"": 75.63% +/- 0.31), (beta-carotene (""amarillo"": 342.42ug/g 0.71) and alpha- tocopherol (""color"": 685.81mg/L +/- 1.04), plus the morphotype ""color"" has a superior oxidation induction time compared to other morphotypes with 6.91 +/- 0.01. The aguaje seed contains significant amounts of (06 (linoleic oil) in ""shambo"" with 36.04 +/- 0.09%. The results indicate that these oils, regardless their classification, contain important chemical compounds that give them a special nutritive value.
Resumo:
The cell provisioning and oviposition process (POP) is a unique characteristic of stingless bees (Meliponini), in which coordinated interactions between workers and queen regulate the filling of brood cells with larval resources and subsequent egg laying. Environmental conditions seem to regulate reproduction in stingless bees; however, little is known about how the amount of food affects quantitative sequences of the process. We examined intrinsic variables by comparing three colonies in distinct conditions (strong, intermediate and weak state). We predicted that some of these variables are correlated with temporal events of POP in Melipona scutellaris colonies. The results demonstrated that the strong colony had shorter periods of POP.
Resumo:
The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.
Resumo:
Objective: The purpose of this study was to evaluate the effects of low-level laser (LLL) energy on the clinical signs of inflammation and the cellular composition of synovial fluid (SF) in the inflamed knee of the rabbit. Background Data: There are few findings related to the effects of LLL on SF in inflammatory processes and there is little knowledge about the optimal parameters for reducing joint inflammation. Materials and Methods: Inflammation in the right knee of 36 rabbits was induced by intracapsular injection (0.2 mL) of Terebinthina commun (Tc). The animals were randomly assigned to three groups: acute experimental group (AEG), chronic experimental group (CEG), and control group (CG), which only received Tc. Each group was divided in two subgroups of six animals each. The AEG and CEG groups began to receive laser treatment 2 and 5 d after the induction of inflammation, respectively. Laser irradiation at a wavelength of 830 nm, power output of 77 mW, and power density of 27.5 W/cm(2) was applied daily for 7 d for either 0.12 sec or 0.32 sec, resulting in doses of 3.4 J/cm(2) and 8 J/cm(2), respectively. Body mass, joint perimeter, joint temperature, and the morphology of the SF were analyzed. Results: There was no statistically significant differences between groups in the body mass, joint perimeter, and SF morphology. Conclusion: Laser irradiation with the selected parameters produced only a few subtle differences in the inflammatory signs and the SF. The lack of effects may have been due to the short irradiation time.
Resumo:
The aim of the present study was to evaluate the viability of Neospora caninum sporulated oocysts after various chemical and physical treatments. Bioassays in gerbils and molecular techniques (PCR-RFLP) were used for identification of the oocysts shed by experimentally infected dogs. Sporulated oocysts were purified and divided into 11 treatment groups as follows: absolute ethanol for 1 hr; 20 C for 6 hr; 4 C for 6 hr; 60 C for 1 min; 100 C for 1 min; 10% formaldehyde for 1 hr; 10% ammonia for 1 hr; 2% iodine for 1 hr; 10% sodium hypochlorite for I hr; 70% ethanol for I hr; and one group was left untreated and kept as a positive control. All chemical treatments were performed at room temperature (37 C). A total of 33 gerbils, or 3 gerbils per treatment, were used for bioassays. After treatment, the oocysts were divided into aliquots of 1,000 oocysts and orally administered to gerbils. After 63 days, the gerbils were anesthetized and killed with 0.2 ml of T61; blood and tissue samples were collected for serological (IFAT and western blotting), molecular (real-time PCR), histopathology, and immunohistochemical tests. Treatments were considered effective only if all 5 detection techniques tested negative. High temperatures at 100 C for 1 min and 10% sodium hypochlorite for 1 hr were the only treatments that met this condition, effectively inactivating all oocysts.
Evaluation of Laser Phototherapy in the Inflammatory Process of the Rat's TMJ Induced by Carrageenan
Resumo:
Aim: The aim of this study was to evaluate, by light microscopy, the effects of laser phototherapy (LPT) at 780nm or a combination of 660 and 790 nm, on the inflammatory process of the rat temporomandibular joint (TMJ) induced by carrageen. Background: Temporomandibular disorders (TMDs) are frequent in the population and generally present an inflammatory component. Previous studies have evidenced positive effects of laser phototherapy on TMDs. However, its mechanism of action on the inflammation of the TMJ is not known yet. Materials and Methods: Eighty-five Wistar rats were divided into 9 groups: G1, Saline; G2, Saline + LPT IR; G3, Saline + LPT IR + R; G4, Carrageenan; G5, Carrageenan + LPT IR; G6, Carrageenan + LPT IR + R; G7, previous LPT + Carrageenan; G8, previous LPT + carrageenan + LPT IR; and G9, previous LPT + carrageenan + LPT IR + R, and then subdivided in subgroups of 3 and 7 days. After animal death, specimens were taken, routinely cut and stained with HE, Sirius Red, and Toluidine Blue. Descriptive analysis of components of the TMJ was done. The synovial cell layers were counted. Results: Injection of saline did not produced inflammatory reaction and the irradiated groups did not present differences compared to non-irradiated ones. After carrageenan injection, intense inflammatory infiltration and synovial cell layers proliferation were observed. The infrared irradiated group presented less inflammation and less synovial cell layers number compared to other groups. Previous laser irradiation did not improve the results. Conclusion: It was concluded that the LPT presented positive effects on inflammatory infiltration reduction and accelerated the inflammation process, mainly with IR laser irradiation. The number of synovial cell layers was reduced on irradiated group.
Resumo:
In 2002, the Brazilian Ministry of Education approved the official curricular guidelines for undergraduate courses in Brazil to be adopted by the nation's 188 dental schools. In 2005-06, the Brazilian Dental Education Association (BDEA) promoted workshops in forty-eight of the schools to verify the degree of transformation of the curriculum based on these guidelines. Among the areas analyzed were course philosophy (variables were v1: knowledge production based on the needs of the Brazilian Public Health System [BPHS]; v2: health determinants; and v3: postgraduate studies and permanent education); pedagogical skills (v4: curricular structure; v5: changes in pedagogic and didactic skills; and v6: course program orientation); and dental practice scenarios (v7: diversity of the scenarios for training/learning; v8: academic health care centers opened to the BPHS; and v9: participation of students in health care delivery for the population). The subjects consisted of faculty members (n=711), students (n=228), and employees (n=14). The results showed an incipient degree of curriculum transformation. The degree of innovation was statistically different depending on the type of university (public or private) for variables I, 2, 4, 5, 6, and 7. Private schools reported a higher level of innovation than public institutions. Resistance to transforming the dental curriculum according to the official guidelines may be linked to an ideological conception that supports the private practice model, continues to have faculty members direct all classroom activities, and prevents students from developing an understanding of professional practice as targeted towards the oral health needs of all segments of society.
Resumo:
Objective: The aim of this study was to investigate the effects of photodynamic therapy (PDT) on endodontic pathogens by evaluating the decrease in numbers of Enterococcus faecalis colonies in the canals of extracted human teeth. Background Data: Failure in endodontics is usually related to inadequate cleaning and disinfection of the root canal system. This is due to the establishment of microorganisms in areas where the instruments and chemical agents used during root canal preparation cannot eliminate them. PDT is a complementary therapeutic method that could be used to eliminate these remaining bacteria. PDT is a process in which radiation acts on a dye that is applied to the target organism, resulting in bacterial death. Materials and Methods: Forty-six uniradicular teeth had their canals contaminated with bacteria and were incubated for 48 h at 35 degrees C. After that, the teeth were divided into a control group (CG) and a test group (TG). The 23 CG teeth did not undergo any intervention, whereas in the TG the teeth received a solution of 0.0125% toluidine blue for 5 min followed by irradiation using a 50-mW diode laser (Ga-Al-As) at a wavelength of 660 nm. Bacterial samples were taken before and after irradiation. In each of the samples, the number of colony-forming units (CFU) was counted. Results: The mean decrease in CFU was 99.9% in the TG, whereas in the CG an increase of 2.6% was observed. Conclusion: PDT was effective as a bactericidal agent in Enterococcus faecalis-contaminated root canals.
Resumo:
This study proposes a simplified mathematical model to describe the processes occurring in an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater. The reactor, subjected to rising organic loading rates, contained biomass immobilized cubic polyurethane foam matrices, and was operated at 32 degrees C +/- 2 degrees C, using 24-h batch cycles. In the adaptation period, the reactor was fed with synthetic substrate for 46 days and was operated without agitation. Whereas agitation was raised to 500 rpm, the organic loading rate (OLR) rose from 0.3 g chemical oxygen demand (COD) . L(-1) . day(-1) to 1.2 g COD . L(-1) . day(-1). The ASBBR was fed fat-rich wastewater (dairy wastewater), in an operation period lasting for 116 days, during which four operational conditions (OCs) were tested: 1.1 +/- 0.2 g COD . L(-1) . day(-1) (OC1), 4.5 +/- 0.4 g COD . L(-1) . day(-1) (OC2), 8.0 +/- 0.8 g COD . L(-1) . day(-1) (OC3), and 12.1 +/- 2.4 g COD . L(-1) . day(-1) (OC4). The bicarbonate alkalinity (BA)/COD supplementation ratio was 1:1 at OC1, 1:2 at OC2, and 1:3 at OC3 and OC4. Total COD removal efficiencies were higher than 90%, with a constant production of bicarbonate alkalinity, in all OCs tested. After the process reached stability, temporal profiles of substrate consumption were obtained. Based on these experimental data a simplified first-order model was fit, making possible the inference of kinetic parameters. A simplified mathematical model correlating soluble COD with volatile fatty acids (VFA) was also proposed, and through it the consumption rates of intermediate products as propionic and acetic acid were inferred. Results showed that the microbial consortium worked properly and high efficiencies were obtained, even with high initial substrate concentrations, which led to the accumulation of intermediate metabolites and caused low specific consumption rates.