996 resultados para Chemical modifications
Resumo:
The objective of this work was to characterize the chemical properties of white oat (Avena sativa) caryopsis and to determine the adaptability and stability of cultivars recommended for cultivation in the state of Rio Grande do Sul, Brazil. The trials were carried out in the 2007, 2008 and 2009 crop seasons, in three municipalities: Augusto Pestana, Capão do Leão, and Passo Fundo. Fifteen cultivars were evaluated in a randomized block design, with four replicates. The contents of protein, lipid, and nitrogen-free extract were evaluated in the caryopsis. Cultivar performances for the measured characters varied according to location and year of cultivation. The cultivar URS Guapa showed high content of nitrogen-free extract and low contents of protein and lipid in the caryopsis. 'FAPA Louise' showed high content of lipid, whereas 'Albasul', 'UPF 15', and 'UPF 18' showed high content of protein and low content of nitrogen-free extract. There is no evidence of an ideal biotype for the evaluated characters, which could simultaneously show high average performance, adaptability to favorable and unfavorable environments, and stability.
Resumo:
Identification of thiol modifications has gained significant importance. It is increasingly recognized that cysteines play an important role in protein function under both physiological and patho-physiological conditions. Here we reviewed different approaches that are used to identify oxidized proteins and discuss different fluorescent labeling techniques, differential two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization - time of flight identification, in short MALDI-TOF. We illuminate processes that depend on protein oxidation of cysteines and we look into consequences of thiol oxidation during aging and in a variety of diseases, with a special reference to Alzheimer's disease. There is an urgent need for methods that detect specifically oxidized proteins and are able to distinguish different oxidation types.
Resumo:
The objective of this work was to evaluate the microbiological and chemical attributes of a soil with a seven‑year history of urea and swine manure application. In the period from October 2008 to October 2009, soil samples were collected in the 0-10 cm layer and were subjected to the treatments: control, without application of urea or manure; and with the application of urea, pig slurry, and deep pig litter in two doses, in order to supply one or two times the recommended N doses for the maize (Zea mays)/black oat (Avena strigosa) crop succession. The carbon of the microbial biomass (MB‑C) and the basal respiration (C‑CO2) were analyzed, and the metabolic (qCO2) and microbial quotient (qmic) were calculated with the obtained data. Organic matter, pH in water, available P and K, and exchangeable Ca and Mg were also determined. The application of twice the dose of deep pig litter increases the MB‑C and C‑CO2 values. The qmic and qCO2 are little affected by the application of swine manure. The application of twice the dose of deep pig litter increases the values of pH in water and the contents of available P and of exchangeable Ca and Mg in the soil.
Resumo:
In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.
Resumo:
The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.
Resumo:
The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC). Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM) decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.
Resumo:
Patients undergoing spinal surgery are at risk of developing thromboembolic complications even though lower incidences have been reported as compared to joint arthroplasty surgery. Deep vein thrombosis (DVT) has been studied extensively in the context of spinal surgery but symptomatic pulmonary embolism (PE) has engaged less attention. We prospectively followed a consecutive cohort of 270 patients undergoing spinal surgery at a single institution. From these patients, only 26 were simple discectomies, while the largest proportion (226) was fusions. All patients received both low molecular weight heparin (LMWH) initiated after surgery and compressive stockings. PE was diagnosed with spiral chest CT. Six patients developed symptomatic PE, five during their hospital stay. In three of the six patients the embolic event occurred during the first 3 postoperative days. They were managed by the temporary insertion of an inferior vena cava (IVC) filter thus allowing for a delay in full-dose anticoagulation until removal of the filter. None of the PE patients suffered any bleeding complication as a result of the introduction of full anticoagulation. Two patients suffered postoperative haematomas, without development of neurological symptoms or signs, requiring emergency evacuation. The overall incidence of PE was 2.2% rising to 2.5% after exclusion of microdiscectomy cases. The incidence of PE was highest in anterior or combined thoracolumbar/lumbar procedures (4.2%). There is a large variation in the reported incidence of PE in the spinal literature. Results from the only study found in the literature specifically monitoring PE suggest an incidence of PE as high as 2.5%. Our study shows a similar incidence despite the use of LMWH. In the absence of randomized controlled trials (RCT) it is uncertain if this type of prophylaxis lowers the incidence of PE. However, other studies show that the morbidity of LMWH is very low. Since PE can be a life-threatening complication, LMWH may be a worthwhile option to consider for prophylaxis. RCTs are necessary in assessing the efficacy of DVT and PE prophylaxis in spinal patients.
Resumo:
The objective of this work was to evaluate the influence of different combinations of grape cultivars and rootstocks on chemical characteristics of grape juices. Six treatments were evaluated, consisting of combinations between the Isabel Precoce and BRS Cora grape cultivars and the 'IAC 766', 'IAC 313', and 'IAC 572' rootstocks. Approximately 10 L of juice were obtained per treatment. Analyses of color, total soluble solids content, pH, anthocyanins, total phenolics, total sugars, and quantification and identification of biogenic amines by HPLC were performed. Biogenic amines, such as putrescine, cadaverine, spermidine, and spermine, were found in all evaluated cultivars. By principal component analysis (PCA), treatments can be divided into two groups, according to the cultivar. Juices obtained from 'Isabel Precoce' are characterized by higher levels of total sugar content and soluble solids; however, juices from 'BRS Cora' are positively correlated with phenolic content, anthocyanins, and color and acidity parameters. The differences found by PCA for juices from the Isabel Precoce and BRS Cora cultivars indicate that, regardless of the rootstock used, the most important factor in the chemical characterization of juices is the grape cultivar.
Resumo:
Abstract:The objective of this work was to evaluate the effect of abscisic acid, applied at different rates and different fruit developmental stages, on the thinning of 'Chiripá' peach. Abscisic acid (ABA) at 500 mg L-1 was applied at three stages of fruit development based on lignin deposition: stage 1, at 24 days after full bloom (DAFB); stage 2, at 40 DAFB; and stage 3, at 52 DAFB. Only ABA application at stage 2 - 40 DAFB - reduced fruit set and the number of fruit per plant. Three ABA concentrations (350, 500, and 750 mg L-1) were then applied at 40 DAFB. All rates increased fruit ethylene production and fruit abscission.
Resumo:
The present work describes a fast gas chromatography/negative-ion chemical ionization tandem mass spectrometric assay (Fast GC/NICI-MS/MS) for analysis of tetrahydrocannabinol (THC), 11-hydroxy-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) in whole blood. The cannabinoids were extracted from 500 microL of whole blood by a simple liquid-liquid extraction (LLE) and then derivatized by using trifluoroacetic anhydride (TFAA) and hexafluoro-2-propanol (HFIP) as fluorinated agents. Mass spectrometric detection of the analytes was performed in the selected reaction-monitoring mode on a triple quadrupole instrument after negative-ion chemical ionization. The assay was found to be linear in the concentration range of 0.5-20 ng/mL for THC and THC-OH, and of 2.5-100 ng/mL for THC-COOH. Repeatability and intermediate precision were found less than 12% for all concentrations tested. Under standard chromatographic conditions, the run cycle time would have been 15 min. By using fast conditions of separation, the assay analysis time has been reduced to 5 min, without compromising the chromatographic resolution. Finally, a simple approach for estimating the uncertainty measurement is presented.
Resumo:
In the drilling processes and especially deep-hole drilling process, the monitoring system and having control on mechanical parameters (e.g. Force, Torque,Vibration and Acoustic emission) are essential. The main focus of this thesis work is to study the characteristics of deep-hole drilling process, and optimize the monitoring system for controlling the process. The vibration is considered as a major defect area of the deep-hole drilling process which often leads to breakage of the drill, therefore by vibration analysis and optimizing the workpiecefixture, this area is studied by finite element method and the suggestions are explained. By study on a present monitoring system, and searching on the new sensor products, the modifications and recommendations are suggested for optimize the present monitoring system for excellent performance in deep-hole drilling process research and measurements.
Resumo:
PURPOSE: To investigate choroidal vascular abnormalities in peripheral exudative hemorrhagic chorioretinopathy, using dynamic ultrawide-field fluorescein angiography (FA) and indocyanine green angiography (ICGA).¦DESIGN: Prospective observational case series.¦METHODS: This institutional study comprised a consecutive series of 40 patients (48 eyes) with peripheral exudative hemorrhagic chorioretinopathy. Choroidal vascular abnormalities were assessed with dynamic ultrawide-field (150-degree) FA and ICGA, using the Staurenghi 230 SLO Retina Lens and the Heidelberg scanning laser ophthalmoscope. The main outcome measures were morphologic descriptions of structural vascular abnormalities and choroidal hemodynamics (comparison with 30 normal eyes).¦RESULTS: The peripheral mass lesions were highly exudative and hemorrhagic, and usually associated with a pigment epithelium detachment. FA revealed nonspecific alterations corresponding to the visible fundoscopic changes (window defects, blockage, staining), but no neovascular membrane. However, despite frequent masking, ICGA showed hyperfluorescent polyp-like structures in the choroid of the lesion area in 33 eyes (69%) and an abnormal choroidal vascular network in 24 eyes (50%). The abnormal choroidal vascular network filled in the arterial or early venous phase, while the polyp-like structures filled some seconds later. Optical coherence tomography revealed the typical dome-shaped elevation of the pigment epithelium over the vascular polyps. Peripheral choriocapillaris closure was observed as well as dilated shunting vessels.¦CONCLUSION: Peripheral exudative hemorrhagic chorioretinopathy shares many characteristics (polyp-like choroidal telangiectases, abnormal choroidal vascular networks, exudative and hemorrhagic presentation) with polypoidal choroidal vasculopathy. Clarification of the precise role of these abnormalities requires further studies.
Resumo:
Characterizing the risks posed by nanomaterials is extraordinarily complex because these materials can have a wide range of sizes, shapes, chemical compositions and surface modifications, all of which may affect toxicity. There is an urgent need for a testing strategy that can rapidly and efficiently provide a screening approach for evaluating the potential hazard of nanomaterials and inform the prioritization of additional toxicological testing where necessary. Predictive toxicity models could form an integral component of such an approach by predicting which nanomaterials, as a result of their physico-chemical characteristics, have potentially hazardous properties. Strategies for directing research towards predictive models and the ancillary benefits of such research are presented here.
Resumo:
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.