698 resultados para Ceramic engineering
Resumo:
An archeological artifact can be seen as a chronological element, which helps to determine the age of certain society and to understand the thinking, values and the way of life of this society. Thus, the classification of archeological artifacts is one of the approaches used to study the cultural system of antique societies trying to reconstruct their history. The "Centro de Museologia, Antropologia e Argueologia (CEMAARQ)" of the "Unesp Univ Estadual Paulista" in Presidente Prudente, São Paulo state, Brazil, develops projects within this context (identification and preservation). This is the case of the archeological site named "Lagoa São Paulo-02" discovered in 1993 at the margins of the Parana river in the region of Presidente Epitacio city, São Paulo state, Brazil. This site has ceramic fragments of different shapes and sizes that have a strong influence of traces of the Guarani culture, which is one of the Brazilian native populations. These samples were basically characterized via micro-Raman scattering and Fourier transform infrared absorption (FTIR) spectroscopies. The main objective was to identify the pigments used in the manufacture of the ceramic artifacts and to analyze the composition of the ceramic body to understand how the artifacts were made. Three pigments were found: red, black and white. For the red pigment were identified characteristic bands of hematite, an iron oxide found in the red rocks of the river banks that were eroded by water. The black pigment, probably, is due to the use of vegetal charcoal, which is found in nature as the product of burning organic material such as wood. For the white pigment, the FTIR spectra suggested the use of kaolin, either in the ceramic body or in the proper white pigment, due to the presence of the characteristic bands of the kaolinite. Complementary, the additives applied as anti-plastics were identified as charcoal and quartz, being the latter found in the rocks present in the archeological site. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Sugarcane bagasse ash (SCBA) is an industrial waste that contains silicon and aluminum oxides as the major components and iron, calcium, magnesium, and potassium oxides as the main minor components. In this paper, SCBA from one Brazilian factory was characterized and tested for its influence on the ceramic properties of clay/ash ceramic probes. Prismatic probes were pressed (18 MPa) using a ceramic mass mixed with 0%, 5%, 8%, and 10% ash. The probes were fired at temperatures between 800 degrees and 1200 degrees C. X-ray diffraction, X-ray fluorescence, thermal analysis (differential thermal analysis, thermo-gravimetric analysis/differential thermogravimetric analysis), and tests for texture (particle-size analysis), flexural strength, and linear shrinkage were carried out to characterize the samples. The results showed that the amount of ash to be incorporated will depend on mainly the composition of clay but also ash, and indicated that the clay used in this work can incorporate up to 10% weight of ash to produce solid bricks. The results also showed an improvement in ceramic/ash properties up to sintering temperatures higher than 1000 degrees C.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 degrees C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os materiais cerâmicos são atualmente cada vez utilizados como opção na engenharia mundial. Por se tratar de materiais com alta resistência mecânica, possuem muitas aplicações em diversas áreas, como por exemplo a de mancais, a automotiva (sensores, isoladores, catalisadores, pistões, válvulas, revestimentos), a de implantes biocompatíveis (dentário, substituição óssea, válvulas cardíacas), a de produtos sujeitos ao desgaste (guias), a de refratários (revestimento de equipamento bélico, componentes de fornos), a eletrônica, e outras. Nos processos de fabricação da cerâmica há uma gama de fatores que contribuem para as características do produto final. Devido a isso, muitos pesquisadores têm trabalhado no estudo da influência de determinados defeitos e técnicas de produção de cerâmicas nas características do produto final. Este trabalho tem como objetivo fazer uma revisão bibliográfica de recentes artigos que analisam a influência de fatores como velocidade de queima, surgimento de trincas, porosidade, fases cristalinas, e tamanho de partículas, nas propriedades mecânicas finais das cerâmicas. Pode-se concluir que é possível aperfeiçoar o processo de fabricação da cerâmica a fim de promover as melhores propriedades mecânicas possíveis, conhecendo-se fatores prejudiciais e métodos adequados para se obter o melhor produto final.
Resumo:
A method has been developed to obtain quantitative information about grain size and shape from fractured surfaces of ceramic materials. One elaborated a routine to split intergranular and transgranular grains facets of ceramic fracture surfaces by digital image processing. A commercial ceramic (ALCOA A-16, Al2O3-1.5% of CrO) was used to test the proposed method. Microstructural measurements of grain shape and size taken from fracture surfaces have been compared through descriptive statistics of distributions, with the corresponding measurements from polished and etched surfaces. The agreement between results, with the expected bias on grain size values from fractures, obtained for both types of surfaces allowed to infer that this new technique can be used to extract the relevant microstructural information from fractured surfaces, thus minimising the time consuming steps of sample preparation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The non-ohmic and dielectric properties as well as the dependence on the microstructural features of CaCu(3)Ti(4)O(12)/CaTiO(3) ceramic composites obtained by conventional and microwave sintering were investigated. It was demonstrated that the non-ohmic and dielectric properties depend strongly on the sintering conditions. It was found that the non-linear coefficient reaches values of 65 for microwave-sintered samples and 42 for samples sintered in a conventional furnace when a current density interval of 1-10 mA cm(-2) is considered. The non-linear coefficient value of 65 is equivalent to 1500 for samples sintered in the microwave if a current interval of 5-30 mA is considered as is shortly discussed by Chung et al (2004 Nature Mater. 3 774). Due to a high non-linear coefficient and a low leakage current (90 mu A) under both processing conditions, these samples are promising for varistor applications. The conventionally sintered samples exhibit a higher relative dielectric constant at 1 kHz (2960) compared with the samples sintered in the microwave furnace (2100). At high frequencies, the dielectric constant is also larger in the samples sintered in the conventional furnace. Depending on the application, one or another synthesis methodology is recommended, that is, for varistor applications sintered in a microwave furnace and for dielectric application sintered in a conventional furnace.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The recent discovery of a ferroelectric monoclinic phase in the PbZr1-xTixO3 (PZT) system attained the attention of several researchers due to the possibility of understanding the relationships between structural features and piezoelectric properties. The nature of the monoclinic phase in some PZT compositions remains controversial and unclear. In this work, structural phase transitions of PbZr0.52Ti0.48O3 ceramic were investigated by infrared spectroscopy as a function of temperature. Studies were centered on nu(1)-stretching modes and corresponding half width Wi as a function of temperature. The occurrence of the anomalies in the infrared spectra as a function of temperature suggests the following monoclinic ( LT) -> monoclinic ( HT) -> tetragonal phase transition were observed at 183 K and at 263 K.
Resumo:
Slightly < 111 >-oriented 0.65Pb(Mg1/3Nb2/3)03-0.35PbTiO(3) ceramic was prepared using fine powders obtained by means of an alternative and promising chemical oxide precursor method. High quality samples with improved structural, microstructural, dielectric and ferroelectric properties were obtained. The dielectric constant value (epsilon similar to 2577) measured at 1 kHz is compared to unpoled < 112 > grain-oriented ceramics while the remanent polarization (P-r similar to 19-1 mu cm(-2)) is compared with random grain-oriented ceramics. These results point out the viability to produce ferroelectric PMN-PT ceramics of very good quality using powder precursors prepared from this chemical method. (c) 2007 Elsevier B.V. All rights reserved.