860 resultados para Cellulose-Based Liquid Crystals
Resumo:
In this paper, is presented an economical and technical feasibility study of a combined cycle cogeneration system proposed to be used in a pulp plant located in Brazil, where around 95% of country's pulp production is done by the use of Kraft Process. This process allows the use of black liquor and other by-products as fuel. This study is based upon actual data from a pulp plant with a daily production of 1000 tons., that generates part of the energy demanded by the process in a conventional cogeneration system with condensing steam turbine and two extractions. The addition of a gas turbine was studied to compare electricity production level and its related costs between original system and the new one, considering that the former can use industrial by-products and firewood as fuel, when required. Several parameters related to electric generation systems operation and production costs were studied. The use of natural gas in the combined cycle, in comparison with the use of firewood in the conventional system was studied. The advantages of natural gas fuel are highlighted. The surplus availability and the electricity generation costs are presented as a function of pulp and black liquor production.
Resumo:
Thermoeconomic Functional Analysis is a method developed for the analysis and optimal design of improvement of thermal systems (Frangopoulos, 1984). The purpose of this work is to discuss the cogeneration system optimization using a condensing steam turbine with two extractions. This cogeneration system is a rational alternative in pulp and paper plants in regard to the Brazilian conditions. The objective of this optimization consists of minimizing the global cost of the system acquisition and operation, based on the parametrization of actual data from a cellulose plant with a daily production of 1000 tons. Among the several possible decision variables, the pressure and temperature of live steam were selected. These variables significantly affect the energy performance of the cogeneration system. The conditions which determine a lower cost for the system are presented in conclusion.
Resumo:
The microstructural evolution, grain growth and densification for the varistor systems ZnO-Bi2O3 (ZB), ZnO-Bi2O3-Sb2O3 (ZBS), ZnO-Bi2O3-Sb2O3-MnO-Cr 2O3-CoO (ZBSCCM) were studied using constant heating rate sintering, scanning electron microscopy (SEM) and in situ phase formation measurement by high temperature X-ray diffraction (HT-XRD). The results showed that the densifying process is controlled by the formation and decomposition of the Zn2Bi3Sb3O14 pyrochlore (PY) phase for the ZBS and ZBSCCM systems. The addition of transition metals (ZBSCCM system) alters the formation and decomposition reaction temperatures of the pyrochlore phase and the morphology of the Zn7Sb2O12 spinel phase. Thus, the spinel grains act as inclusions and decrease the ZnO grain growth rate. Spinel grain growth kinetics in the ZBSCCM system showed an n value of 2.6, and SEM and HT-XRD results indicate two grain growth mechanisms based on coalescence and Ostwald ripening. © 1996 Chapman & Hall.
Resumo:
A rapid and sensitive method is described for the determination of clofentezine residues in apple, papaya, mango and orange. The procedure is based on the extraction of the sample with a hexane:ethyl acetate mixture (1:1, v/v) and liquid chromatographic analysis using UV detection. Mean recoveries from 4 replicates of fortified fruit samples ranged from 81% to 96%, with coefficients of variation from 8.9% to 12.5%. The detection and quantification limits of the method were of 0.05 and 0.1 mg kg-1, respectively.
Resumo:
The aim of this study was to evaluate the antimicrobial activity of a new root canal sealer containing calcium hydroxide (Acroseal) and the root canal sealer based on MTA (Endo CPM Sealer), in comparison with traditional sealers (Sealapex, Sealer 26 and Intrafill) and white MTA-Angelus, against five different microorganism strains. The materials and their components were evaluated after manipulation, employing the agar diffusion method. A base layer was made using Müller-Hinton agar (MH) and wells were made by removing agar. The materials were placed into the wells immediately after manipulation. The microorganisms used were: Micrococcus luteus (ATCC9341), Staphylococcus aureus (ATCC6538), Pseudomonas aeruginosa (ATCC27853), Candida albicans (ATCC 10231), and Enterococcus faecalis (ATCC 10541). The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37 degrees C for 24 h. The results showed that Sealapex and its base paste, Sealer 26 and its powder, Endo CPM Sealer and its powder, white MTA and its powder all presented antimicrobial activity against all strains. Intrafill and its liquid presented antimicrobial activity against all strains except P. aeruginosa and Acroseal was effective only against M. luteus and S. aureus.
Resumo:
This paper presents a comparative analysis between the experimental characterization and the numerical simulation results for a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Specifically, experimental optical characterization, by means of reflectance measurements under variable angles over the lattice plane family [1,1, 1], are compared to theoretical calculations based on the Finite Di®erence Time Domain (FDTD) method, in order to investigate the correlation between theoretical predictions and experimental data. The goal is to highlight the influence of crystal defects on the achieved performance.
Resumo:
The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40-50 of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration. © 2011 S. Saska et al.
Resumo:
The present study describes the incorporation of a complexing agent, dithiooxamide, into microcrystalline cellulose for use in the pre-concentration of Cu(II) and Cd(II) ions from aqueous samples. The FTIR spectrum of the adsorbent exhibited an absorption band in the region of 800 cm-1, which confirmed the binding of the silylating agent to the matrix. Elemental analysis indicated the amount of 0.150 mmol g-1 of the complexing agent. The adsorption data were fit to the modified Langmuir equation, and the maximum amount of metal species extracted from the solution, Ns, was determined to be 0.058 and 0.072 mmol g-1 for Cu(II) and Cd(II), respectively. The covering fraction φ, which was 0.39 and 0.48 for Cu(II) and Cd(II), respectively, was used to estimate a 1:2 (metal:ligand) ratio in the formed complex, and a binding model was proposed based on this information. The adsorbent was applied in the pre-concentration of natural water samples and exhibited an enrichment factor of approximately 50-fold for the species studied, which enabled its use in the analysis of trace metals in aqueous samples. The system was validated by the analysis of certified standard (1643e), and the adsorbent was stable for more than 20 cycles, thus enabling its safe reutilization. © 2012 Elsevier B.V. All rights reserved.
Resumo:
New nanocomposites based on bacterial cellulose nanofibers (BCN) and polyurethane (PU) prepolymer were prepared and characterized by SEM, FT-IR, XRD, and TG/DTG analyses. An improvement of the interface reaction between the BCN and the PU prepolymer was obtained by a solvent exchange process. FT-IR results showed the main urethane band at 2,270 cm-1 to PU prepolymer; however, in nanocomposites new bands appear as disubstituted urea at 1,650 and 1,550 cm-1. In addition, the observed decrease in the intensity of the hydroxyl band (3,500 cm-1) suggests an interaction between BCN hydroxyls and NCO-free groups. The nanocomposites presented a non-crystalline character, significant thermal stability (up to 230 °C) and low water absorption when compared to pristine BCN. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Lead molybdate (PbMoO4) crystals were synthesized by the co-precipitation method at room temperature and then processed in a conventional hydrothermal (CH) system at low temperature (70 °C for different times). These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, micro-Raman (MR) and Fourier transformed infrared (FT-IR) spectroscopies. Field emission scanning electron microscopy images were employed to observe the shape and monitor the crystal growth process. The optical properties were investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) measurements. XRD patterns and MR spectra indicate that these crystals have a scheelite-type tetragonal structure. Rietveld refinement data possibilities the evaluation of distortions in the tetrahedral [MoO 4] clusters. MR and FT-IR spectra exhibited a high mode ν1(Ag) ascribed to symmetric stretching vibrations as well as a large absorption band with two modes ν3(Eu and Au) related to anti-symmetric stretching vibrations in [MoO 4] clusters. Growth mechanisms were proposed to explain the stages involved for the formation of octahedron-like PbMoO4 crystals. UV-Vis absorption spectra indicate a reduction in optical band gap with an increase in the CH processing time. PL properties of PbMoO4 crystals have been elucidated using a model based on distortions of tetrahedral [MoO4] clusters due to medium-range intrinsic defects and intermediary energy levels (deep and shallow holes) within the band gap. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this letter, we report, for the first time, the real-time in situ nucleation and growth of Ag filaments on α-Ag2 WO4 crystals driven by an accelerated electron beam from an electronic microscope under high vacuum. We employed several techniques to characterise the material in depth. By using these techniques combined with first-principles modelling based on density functional theory, a mechanism for the Ag filament formation followed by a subsequent growth process from the nano-to micro-scale was proposed. In general, we have shown that an accelerated electron beam from an electronic microscope under high vacuum enables in situ visualisation of Ag filaments with subnanometer resolution and offers great potential for addressing many fundamental issues in materials science, chemistry, physics and other fields of science.
Resumo:
A rational and selective method using on-line high-performance liquid chromatography (HPLC) coupled with electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QToF-MS/MS) was established for the dereplication of phenolic derivatives from Qualea grandiflora and Qualea cordata. The selection of the extracts was based on the antioxidant capacity measured by in vitro DPPH assay. The HPLC-ESI-QToF-MS/MS analysis was conducted by on-flow detection, using high-resolution mass/ratio ions as well as collision induced MS/MS experiments for selected protonated ions. The dereplication of the EtOAc fraction from the hydro alcohol extract from the stem bark of Q. grandiflora allowed the detection of the flavonoids: 3',4',5',5,6,7-hexahydroxy- 8 methylflavanone, 8-methyl-naringenine and 3',7-dimethoxy-8 methyl-4',5,7- trihydroxyflavanone, as well as a benzophenone derivatives: bis(4,6-dimethoxy-2- hydroxy-3-methylphenyl)- metanone, 3',4'-dimethoxy-8-methyl-5,6,7 trihydroxyflavanone, 7-methoxy-6-methyl- 3',4',5 trihydroxyflavanone, 6,8-dimethyl-3' methoxy-4',5,7 trihydroxyflavanone and 3',5'-dimethoxy-6,8- dimethyl-4',5,7 trihydroxyflavanone were detected in the EtOAc fraction from the hydro-alcohol extract from the leaves of Q. cordata. © 2013 Sociedade Brasileira de Química.
Resumo:
Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings. © 2013 American Chemical Society.
Resumo:
Includes bibliography.