961 resultados para Carrier Proteins -- analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies in mouse models have suggested that genetic transfer of tumor antigen-specific high affinity T cell receptors (TCR) into host lymphocytes could be a viable strategy for the rapid induction of tumor-specific immunity. A previously proposed approach for the isolation of such TCRs consists in circumventing tolerance to self-restricting HLA/peptide complexes by deriving them from PMBCs of allogenic donors. Towards this aim, we used fluorescent HLA-A2 class-I/peptide soluble multimers to isolate A2-restricted CD8+ T cells specific for a previously described Melan-A peptide enhanced analog (Melan-A 26-35 A27L) from an HLA-A*0201 (A2) negative donor. We isolated two distinct groups of Melan-A 26-35 A27L-specific clones. Clones from the first group recognized the analog peptide with high avidity but showed very low recognition of Melan-A parental peptides. In contrast, clones from the second group efficiently recognized Melan-A parental peptides. Surprisingly however, most clones recognized not only A2+ Melan-A+ targets, but also A2+ Melan-A- targets suggesting that they can also recognize endogenous peptides other than Melan-A. In addition, one clone showed full cross-recognition of an antigenically unrelated peptide. Together, our data show that HLA-A2/peptide multimers can be successfully used for the isolation of allorestricted CD8+ T cells reactive with tumor antigen-derived peptides. However, as the cross-reactivity of these apparently peptide-specific allorestricted TCRs is presently unpredictable, a careful in vitro analysis of their reactivity to the host's normal cells is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of proteins has been a key element in biomedicine and biotechnology because of their important role in cell functions or enzymatic activity. Cells are the basic unit of living organisms, which are governed by a vast range of chemical reactions. These chemical reactions must be highly regulatedin order to achieve homeostasis. Proteins are polymeric molecules that havetaken on the evolutionary process the role, along with other factors, of controlthese chemical reactions. Learning how proteins interact and control their up anddown regulations can teach us how living cells regulate their functions, as well asthe cause of certain anomalies that occur in different diseases where proteins areinvolved. Mass spectrometry (MS) is an analytical widely used technique to studythe protein content inside the cells as a biomarker point, which describesdysfunctions in diseases and increases knowledge of how proteins are working.All the methodologies involved in these descriptions are integrated in the fieldcalled Proteomics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual perception is initiated in the photoreceptor cells of the retina via the phototransduction system.This system has shown marked evolution during mammalian divergence in such complex attributes as activation time and recovery time. We have performed a molecular evolutionary analysis of proteins involved in mammalianphototransduction in order to unravel how the action of natural selection has been distributed throughout thesystem to evolve such traits. We found selective pressures to be non-randomly distributed according to both a simple protein classification scheme and a protein-interaction network representation of the signaling pathway. Proteins which are topologically central in the signaling pathway, such as the G proteins, as well as retinoid cycle chaperones and proteins involved in photoreceptor cell-type determination, were found to be more constrained in their evolution. Proteins peripheral to the pathway, such as ion channels and exchangers, as well as the retinoid cycle enzymes, have experienced a relaxation of selective pressures. Furthermore, signals of positive selection were detected in two genes: the short-wave (blue) opsin (OPN1SW) in hominids and the rod-specific Na+/Ca2+,K+ ion exchanger (SLC24A1) in rodents. The functions of the proteins involved in phototransduction and the topology of the interactions between them have imposed non-random constraints on their evolution. Thus, in shaping or conserving system-level phototransduction traits, natural selection has targeted the underlying proteins in a concerted manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and that trinucleotide repeats are also more abundant in human coding sequences. Using the human species as an outgroup, we were able to address differences in repeat loss and repeat gain in the rat and mouse lineages. In this data set, mouse proteins contain substantially more repeats than rat proteins, which can be at least partly attributed to a higher repeat loss in the rat lineage. The data are consistent with a role for trinucleotide slippage in the generation of novel amino acid repeats. We confirm the previously observed functional bias of proteins with repeats, with overrepresentation of transcription factors and DNA-binding proteins. We show that genes encoding amino acid repeats tend to have an unusually high GC content, and that differences in coding GC content among orthologs are directly related to the presence/absence of repeats. We propose that the different GC content isochore structure in rodents and humans may result in an increased amino acid repeat prevalence in the human lineage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IncP alpha promiscuous plasmid (R18, R68, RK2, RP1 and RP4) comprises 60,099 bp of nucleotide sequence, encoding at least 74 genes. About 40 kb of the genome, designated the IncP core and including all essential replication and transfer functions, can be aligned with equivalent sequences in the IncP beta plasmid R751. The compiled IncP alpha sequence revealed several previously unidentified reading frames that are potential genes. IncP alpha plasmids carry genetic information very efficiently: the coding sequences of the genes are closely packed but rarely overlap, and occupy almost 86% of the genome's nucleotide sequence. All of the 74 genes should be expressed, although there is as yet experimental evidence for expression of only 60 of them. Six examples of tandem-in-frame initiation sites specifying two gene products each are known. Two overlapping gene arrangements occupy different reading frames of the same region. Intergenic regions include most of the 25 promoters; transcripts are usually polycistronic. Translation of most of the open reading frames seems to be initiated independently, each from its own ribosomal binding and initiation site, although, a few cases of coupled translation have been reported. The most frequently used initiation codon is AUG but translation for a few open reading frames begins at GUG or UUG. The most common stop-codon is UGA followed by UAA and then UAG. Regulatory circuits are complex and largely dependent on two components of the central control operon. KorA and KorB are transcriptional repressors controlling at least seven operons. KorA and KorB act synergistically in several cases by recognizing and binding to conserved nucleotide sequences. Twelve KorB binding sites were found around the IncP alpha sequence and these are conserved in R751 (IncP beta) with respect to both sequence and location. Replication of IncP alpha plasmids requires oriV and the plasmid-encoded initiator protein TrfA in combination with the host-encoded replication machinery. Conjugative plasmid transfer depends on two separate regions occupying about half of the genome. The primary segregational stability system designated Par/Mrs consists of a putative site-specific recombinase, a possible partitioning apparatus and a post-segregational lethality mechanism, all encoded in two divergent operons. Proteins related to the products of F sop and P1 par partitioning genes are separately encoded in the central control operon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most obvious characteristics of the egg cells of oviparous animals is their large size resulting to a major extent from the deposition of nutritional reserves, mainly constituted of yolk proteins. In general, these are derived from a precursor called vitellogenin, which undergoes posttranslational modifications during secretion and during transport into and storage within the oocytes. Comparative analysis of the structural organization of the vitellogenin gene and of its product in different species shows that the vitellogenin gene is very ancient and that in vertebrates the gene may have more resemblance to the earliest gene than in invertebrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or ‘‘moonlighting’’, proteins. By and large, moonlighting proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting proteins. In the present work we check whether well-established moonlighting proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the molecular involvement of PTEN, a tumor suppressor gene, in a case of cellular pigmented choroidal Schwannoma in a patient with hamartomatous syndrome due to heterozygous PTEN germline mutation. Methods: Histopathological, immunohistochemical, and electron microscopy analyses were performed by standard procedures. Paraffin-embedded samples of normal and tumor eye tissues were collected and DNA was extracted. A 145 bp region flanking the heterozygous c.406T>C mutation in exon 5 of PTEN was amplified by PCR and sequenced. To evaluate the allelic status of PTEN in the tumor sample, we cloned different PCR products in E. coli using a TA cloning procedure. Results: Histopathology demonstrated a posterior choroidal mass measuring 1.3 x 1.6 x 1.4 cm. The tumor was composed by fascicles of spindle cells with wavy cytoplasm. No Verrocay bodies could be identified. Scattered histiocytes with clear cytoplasm were present. By immunohistochemistry, the cells were expressing S100 and focally Melan A proteins. Pericellular type IV collagen could be demonstrated. Interlacing cytoplasmic processes covered by thick basement membrane could be found by electron microscopy as well as few premelanosomes. Moderate PTEN expression by immunohistochemistry was identified in some cells. As expected, the germline mutation could be detected by DNA sequencing in both the paraffin-embedded normal and tumor eye tissues. Analysis of 33 E. coli colonies bearing clones from the tumor eye tissue DNA surprisingly revealed that most of them contained the PTEN wild-type allele (29 vs. 4, Fisher's test p-value = 0.002). Conclusions: This is the first reported case of choroidal cellular Schwannoma arising in the context of a PTEN hamartomatous syndrome. Allelic analysis of PTEN in the tumor suggests a statistically-significant partial loss of heterozygozity in favor of the wild-type allele. Our findings are in clear contrast with what is usually observed in cancer tissues, for which mutated alleles of tumor suppressor genes are usually brought to homozygosity. Similar results were previously reported in human non-Hodgkin's lymphomas, displaying an overexpression of the wild-type form of the tumor suppressor gene p53. We are in the process of investigating additional DNA derived from other fresh and paraffin-embedded tissues from the patient, in order to gain insights on the molecular bases of PTEN involvement in this rare choroidal Schwannoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Osteoset(®) T is a calcium sulphate void filler containing 4% tobramycin sulphate, used to treat bone and soft tissue infections. Despite systemic exposure to the antibiotic, there are no pharmacokinetic studies in humans published so far. Based on the observations made in our patients, a model predicting tobramycin serum levels and evaluating their toxicity potential is presented. METHODS: Following implantation of Osteoset(®) T, tobramycin serum concentrations were monitored systematically. A pharmacokinetic analysis was performed using a non-linear mixed effects model based on a one compartment model with first-degree absorption. RESULTS: Data from 12 patients treated between October 2006 and March 2008 were analysed. Concentration profiles were consistent with the first-order slow release and single-compartment kinetics, whilst showing important variability. Predicted tobramycin serum concentrations depended clearly on both implanted drug amount and renal function. DISCUSSION AND CONCLUSION: Despite the popularity of aminoglycosides for local antibiotic therapy, pharmacokinetic data for this indication are scarce, and not available for calcium sulphate as carrier material. Systemic exposure to tobramycin after implantation of Osteoset(®) T appears reassuring regarding toxicity potential, except in case of markedly impaired renal function. We recommend in adapting the dosage to the estimated creatinine clearance rather than solely to the patient's weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lassa virus (LASV) causing hemorrhagic Lassa fever in West Africa, Mopeia virus (MOPV) from East Africa, and lymphocytic choriomeningitis virus (LCMV) are the main representatives of the Old World arenaviruses. Little is known about how the components of the arenavirus replication machinery, i.e., the genome, nucleoprotein (NP), and L protein, interact. In addition, it is unknown whether these components can function across species boundaries. We established minireplicon systems for MOPV and LCMV in analogy to the existing LASV system and exchanged the components among the three systems. The functional and physical integrity of the resulting complexes was tested by reporter gene assay, Northern blotting, and coimmunoprecipitation studies. The minigenomes, NPs, and L proteins of LASV and MOPV could be exchanged without loss of function. LASV and MOPV L protein was also active in conjunction with LCMV NP, while the LCMV L protein required homologous NP for activity. Analysis of LASV/LCMV NP chimeras identified a single LCMV-specific NP residue (Ile-53) and the C terminus of NP (residues 340 to 558) as being essential for LCMV L protein function. The defect of LASV and MOPV NP in supporting transcriptional activity of LCMV L protein was not caused by a defect in physical NP-L protein interaction. In conclusion, components of the replication complex of Old World arenaviruses have the potential to functionally and physically interact across species boundaries. Residue 53 and the C-terminal domain of NP are important for function of L protein during genome replication and transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS: We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS: The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS: Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genomic clone (p268c) coding for the 28 kD storage protein Zc2 from maize endosperm has been isolated and sequenced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genomic clone (p268c) coding for the 28 kD storage protein Zc2 from maize endosperm has been isolated and sequenced.