958 resultados para Carnap Entropy
Resumo:
Phenolphthalein poly(ether ether sulphone) (PES-C) was found to be miscible with uncured bisphenol-A-type epoxy resin, i.e. diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature within the whole composition range. Miscibility between PES-C and DGEBA is considered to be due mainly to the entropy contribution. However, dynamic mechanical analysis (d.m.a.) and scanning electron microscopy (SEM) studies revealed that PES-C exhibits different miscibility with four cured epoxy resins (ER). The overall compatibility and the resulting morphology of the cured blends are dependent on the choice of cure agent. For the blends cured with amines (4,4'-diaminodiphenylmethane (DDM) and 4,4'-diaminodiphenylsulphone (DDS)), no phase separation occurs as indicated by either d.m.a. or SEM. However, for the blends cured with anhydrides (maleic anhydride (MA) and phthalic anhydride (PA)), both d.m.a. and SEM clearly show evidence of phase separation. SEM study shows that the two phases interact well in the MA-cured blend while the interface between the phases in the PA-cured blend is poorly bonded. The differences in the overall compatibility and the resulting morphology between the amine-cured and anhydride-cured systems have been discussed from the points of view of both thermodynamics and kinetics.
Resumo:
The stability constants and thermodynamic functions for complexes of rare earth with L-phenylalanine have been determined by potentiometry and calorimetry at 25-degrees-C and ionic strength of 0.15mol.dm-3(NaCl). Stability of the complexes shows the "Tetrad effect". The entropy change makes a predominant contribution to the stability of these complexes. The ligand is coordinated to rare earth ions through its -CO2- and -NH2 group, and dehydration of ions plays an important role in coordination reaction.
Resumo:
The glass transition temperature (T(g)) of cyclic polystyrene was measured by differential scanning calorimetry. There was a marked difference in the glass transition behaviour between cyclic and linear polystyrene. In the low molecular weight region (M(n) < 5 x 10(3)), the T(g) of the cyclic polystyrene increased with decreasing M(n), contrary to that of linear polystyrene. With M(n) higher than 5 x 10(3), the T(g) of cyclic polystyrene increased with increasing M(n). The T(g) of cyclic and linear polystyrene approached the same constant value when the M(n) was high enough (M(n) > 10(5)). Combining the results of specific volume, it is believed that the variation of T(g) with molecular weight does not depend only on free volume effects but that configurational entropy is also an important factor.
Resumo:
The properties of miscible phenolphthalein poly(ether ether ketone)/phenoxy (PEK-C/phenoxy) blends have been measured by dynamic mechanical analysis and tensile testing. The blends were found to have single glass transition temperatures (T(g)) that vary continuously with composition. The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for tensile strength. The tensile strengths of the 90/10 and 75/25 PEK-C/phenoxy blends are higher than those of both the pure components. Embrittlement, or transition from the brittle to the ductile mode of failure, occurs in the composition range of 50-25 wt% PEK-C. These observations suggest that mixing on the segmental level has occurred and that there is enough interaction between the components to decrease its internal mobility significantly. PEK-C was also found to be miscible with the epoxy monomer, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) within the whole composition range. Miscibility between PEK-C and DGEBA could be considered to be due mainly to entropy. However, PEK-C was judged to be immiscible with the diaminodiphenylmethane-curved epoxy resin (DDM-cured ER). It was observed that the PEK-C/ER blends have two T(g), which remain invariant with composition and are almost the same as those of the pure components, respectively. Scanning electron microscopy showed that the PEK-C/ER blends have a two-phase structure. The different miscibility with PEK-C between DGEBA and the DDM-cured ER is considered to be due to the dramatic change in the chemical and physical nature of ER after curing.
Resumo:
The thermodynamics of micellization for polystyrene-b-poly(ethylene/propylene) two-Mock copolymer(SEP) in the mixtures of n-octane and benzene with different proportions have been studied in this paper, The critical micelle concentrations(GMC) of micelle solutions at various temperatures were measured by lost angle laser light scattering photometer(LALLS), The results shove that the micellization process of nonpolar copolymer SEP in hydrocarbon solvents ire exothermal, and the entropy change is negative, In contrast, far ordinary surfactants in water, it is the enthalpy contribution to the energy change which is responsible for micellization.
Resumo:
提出了一种基于加权模糊相对熵的电机转子故障模糊识别方法。该方法将加权思想引入到模糊相对熵,用于识别电机转子故障严重程度。加权方法的引入增加了信息量丰富的符号区间的模糊相对熵占全部区间模糊相对熵的比重,可以更充分、合理地利用该区间的故障信息进行故障识别。电机转子断条故障诊断仿真实验结果表明,提出的方法有效地实现了电机故障的定量分析,能够准确地识别出电机转子故障的严重程度,使算法的鲁棒性得到了改善,故障分类的可靠性及准确程度得到了提高。
Resumo:
首先利用模糊C-均值聚类算法在多特征形成的特征空间上对图像进行区域分割,并在此基础上对区域进行多尺度小波分解;然后利用柯西函数构造区域的模糊相似度,应用模糊相似度及区域信息量构造加权因子,从而得到融合图像的小波系数;最后利用小波逆变换得到融合图像·采用均方根误差、峰值信噪比、熵、交叉熵和互信息5种准则评价融合算法的性能·实验结果表明,文中方法具有良好的融合特性·
Resumo:
针对实时序列图像多目标识别问题提出了一种快速图像处理方法。该方法依据一定的先验知识和准则,对复杂背景图像进行窗口化,对每一个窗口独立进行自适应快速中值滤波,及基于局部图像灰度信息的自适应重新量化和最大熵分割处理,实现了对全景视场内预定目标的快速准确提取和识别。为动态环境中多目标条件下移动机器人的视觉定位、导航和目标跟踪所需图像处理技术提供了一种新的方法。
Resumo:
采用模糊熵函数对图象象素分类作出整体最优分类评价,实现了区域分割.利用矩及其函数做为各区域的特征表达,构成以区域为基元的符号特征集并描述图象内容。根据立体图象对间的几何关系,解出各区域(基元)的相对三维坐标。与象索匹配相比较,它可以获得较高精度的三维信息和可描述的景物信息.通过获取不同时空的各区域(基元)三维信息,确定了它们的空间运动状态。联系这些状态,构造出景物中物体间的空间关系和近似模型,实现了对景物的3-D识别和描述。
Resumo:
Conventional seismic attribute analysis is not only time consuming, but also has several possible results. Therefore, seismic attribute optimization and multi-attribute analysis are needed. In this paper, Fuyu oil layer in Daqing oil field is our main studying object. And there is much difference between seismic attributes and well logs. So under this condition, Independent Component Analysis (ICA) and Kohonen neural net are introduced to seismic attribute optimization and multi-attribute analysis. The main contents are as follows: (1) Now the method of seismic attribute compression is mainly principal component analysis (PCA). In this article, independent component analysis (ICA), which is superficially related to PCA, but much more powerful, is used to seismic reservoir characterizeation. The fundamental, algorithms and applications of ICA are surveyed. And comparation of ICA with PCA is stydied. On basis of the ne-entropy measurement of independence, the FastICA algorithm is implemented. (2) Two parts of ICA application are included in this article: First, ICA is used directly to identify sedimentary characters. Combined with geology and well data, ICA results can be used to predict sedimentary characters. Second, ICA treats many attributes as multi-dimension random vectors. Through ICA transform, a few good new attributes can be got from a lot of seismic attributes. Attributes got from ICA optimization are independent. (3) In this paper, Kohonen self-organizing neural network is studied. First, the characteristics of neural network’s structure and algorithm is analyzed in detail, and the traditional algorithm is achieved which has been used in seism. From experimental results, we know that the Kohonen self-organizing neural network converges fast and classifies accurately. Second, the self-organizing feature map algorithm needs to be improved because the result of classification is not very exact, the boundary is not quite clear and the velocity is not fast enough, and so on. Here frequency sensitive principle is introduced. Combine it with the self-organizing feature map algorithm, then get frequency sensitive self-organizing feature map algorithm. Experimental results show that it is really better. (4) Kohonen self-organizing neural network is used to classify seismic attributes. And it can be avoided drawing confusing conclusions because the algorithm’s characteristics integrate many kinds of seismic features. The result can be used in the division of sand group’s seismic faces, and so on. And when attributes are extracted from seismic data, some useful information is lost because of difference and deriveative. But multiattributes can make this lost information compensated in a certain degree.
Resumo:
Toppling is a major failure model in anti-dip layered rock slopes. Because of the limited by testing means and experimental apparatus, present research on the deformation mechanism and stability analysis are mainly focus on the 2-Dimensional deformation, and the research really based on 3-Dimension is still limited. Therefore, based on the present research station, the article rely on the important hydroelectric project of typical anti-dip layered rock slopes -- The left bank slope of Long-tan hydropower-station in Guang Xi, China, and focused on the influencing factors, deformation mechanism and stability analysis of anti-dip layered rock slopes, three problems as follows are researched in this paper. (1) Deformation influencing factor analysis on ant-dip layered rock slopes Three influencing factors are included: geological factor, engineering factor and environmental factor. It is concluded that the toppling deformation of anti-dip layered rock slopes are more sensitive to geological and engineering factors, but less sensitive to environmental factor. In addition, the sensitivity of various factors to the rock toppling deformation is also arranged sequentially as follows: construction, gravitation, rainfall (underground water) and rock structure intensity, etc. (2) 3D deformation study on the anti-dip layered toppling rock slopes Used 3D Distinct Element Method (3DEC) analyzed the 3D deformation characteristic of anti-dip layered rock slops. It can be seen that the toppling characteristics are obvious when the inter-angle between slope direction and layer striking direction is under 20o, when the inter-angle is over 20o and equal or less than 40o,the toppling deformation characteristics decrease sharply with increase of inter-angle, when the inter-angle is over 40o , the slope deformation is not controlled by joints but influenced by other failure mode. Therefore, in order to quantify the toppling characteristics, a differential value of displacement vector angle between layered rock slope and block rock slope is proposed as a key index to distinguish failure model for anti-dip layered rock slopes, and it was applied to study the toppling of the rock slopes at Guangxi Long-tan hydropower station, China. The results indicated that the index was effective and instructive for analyzing the anti-dip layered rock slopes. (3) Stability analysis methods Because of the imperfection of some present slope analysis methods, based on slope failure mode and those three influencing factors, “slope stability entropy” method is defined in this paper, which makes good use of the sensitivity of relational matrix to influencing factors on slope stability and the qualification characteristics for information entropy to the irregularity of slope deformation. By this method, not only the randomness of geologic body on the base of dynamic analysis of slope failure mode is fully concerned, but also it makes the analysis time-saving and simple. Finally, the research findings were used to the engineering example successfully, and rational conclusion has been obtained.
Resumo:
In this dissertation, we investigated two types of traveling ionospheric disturbances (TIDs)/gravity waves (GWs) triggered separately by auroral energy input during super geomagnetic storms and solar terminator (ST) under quiet geomagnetic conditions (kp<3+) using TEC measurements from the global network of GPS receivers. Research into the generation and propagation of TIDs/GWs during storms greatly enhance our understandings on the evolution processes of energy transportation from the high-latitude’s magnetosphere to the low-latitude ionosphere and the conjugated effect of TIDs propagation between the northern and southern hemispheres. Our results revealed that the conjugacy of propagation direction between the northern and southern hemispheres was subject to the influence of Coriolis force. We also figure out the evolution processes of ionospheric disturbances at the global scale. These are important topics that had not been well addressed previously. In addition, we also obtained thee wave structures of medium scale TIDs excited by the solar terminator (ST) moving over the northern America and physical mechanisms involved. Our observations confirm that the ST is a stable and repetitive source of ionospheric wave disturbances and the evidence of solar terminator generated disturbances has been demonstrated experimentally via the GPS TEC measurement. The main researches and results of this dissertation are as follows. First, the global traveling ionospheric disturbances (TIDs) during the drastic magnetic storms of October 29–31, 2003 were analyzed using the Global Position System (GPS) total electron content (TEC) data observed in the Asian-Australian, European and North American sectors. We collected the most comprehensive set of the TEC data from more than 900 GPS stations on the International GNSS Services (IGS) website and introduce here a strategy that combines polynomial fitting and multi-channel maximum entropy spectral analysis to obtain TID parameters. Moreover, in collaboration with my thesis advisor, I have developed an imaging technique of 2-dimensional map of TIDs structures to obtain spatial and temporal maps of large scale traveling ionospheric disturbances (LSTIDs). The clear structures of TEC perturbations map during the passage of TIDs were displayed. The results of our study are summarized as follows: (1) Large-scale TIDs (LSTIDs) and medium-scale TIDs (MSTIDs) were detected in all three sectors after the sudden commencement (SC) of the magnetic storm, and their features showed longitudinal and latitudinal dependences. The duration of TIDs was longer at higher latitudes than at middle latitudes, with a maximum of about 16 h. The TEC variation amplitude of LSTIDs was larger in the North American sector than in the two other sectors. At the lower latitudes, the ionospheric perturbations were more complicated, and their duration and amplitude were relatively longer and larger. (2) The periods and phase speeds of TIDs were different in these three sectors. In Europe, the TIDs propagated southward; in North America and Asia, the TIDs propagated southwestward; in the near-equator region, the disturbances propagated with the azimuth (the angle of the propagation direction of the LSTIDs measured clockwise from due north with 0°) of 210° showing the influence of Coriolis force; in the Southern Hemisphere, the LSTIDs propagated conjugatedly northwestward. Both the southwestward and northeastward propagating LSTIDs are found in the equatorial region. These results mean that the Coriolis effect cannot be ignored for the wave propagation of LSTIDs and that the propagation direction is correlated with the polar magnetic activity. (3) The day (day of year: 301) before the SC (sudden commencement) of magnetic storm, we observed a sudden TEC skip disturbances (±10 TECU). It should be a response for the high flux of proton during the solar flare event, but not the magnetic storms. Next, the most comprehensive and dense GPS network’s data from North-America region were used in this paper to analyze the medium scale traveling ionospheric disturbances (MSTIDs) which were generated by the moving solar terminator during the quiet days in 2005. We applied the multi-channel maximum entropy spectral analysis to calculated TID parameters, and found that the occurrence of ST-MSTIDs depends on the seasonal variations. The results of our study are summarized as follows: (1) MSTIDs stimulated by the moving ST (ST-MSTIDs) are detected at mid-latitudes after the passage of the solar terminator with the life time of 2~3 hours and the variation amplitude of 0.2~0.8 TECU. Spectral analysis indicated that the horizontal wavelength, average period, horizontal phase velocity of the MSTIDs are around 300±150 km,150±80 m/s and 25±15 min, respectively. In addition, ST-MSTIDs have wave fronts elongating the moving ST direction and almost parallel to ST. (2) The statistical results demonstrate that the dusk MSTIDs stimulated by ST is more obvious than the dawn MSTIDs in summer. On the contrary, the more-pronounced dawn MSTIDs occurs in winter. (3) Further analysis indicates that the seasonal variations of ST-MSTIDs occurrence frequency are most probably related to the seasonal differences of the variations of EUV flux in the ionosphere region and recombination process during sunrise and sunset period at mid-latitudes. Statistical study of occurrence characteristics of TIDs using the GPS network in North-American and European during solar maximum, In conclusion, statistical studies of the propagation characteristics of TIDs, which excited by the two common origins including geomagnetic storms and moving solar terminator, were involved with global GPS TEC databasein this thesis. We employed the multichannel maximum entropy spectral analysis method to diagnose the characteristics of propagation and evolvement of ionospheric disturbances, also, the characteristics of their regional distribution and climatological variations were revealed by the statistic analysis. The results of these studies can improve our knowledge about the energy transfer in the solar-terrestrial system and the coupling process between upper and lower atmosphere (thermosphere-ionosphere-mesosphere). On the other hand, our results of the investigation on TIDs generated by particular linear origin such as ST are important for developing ionospheric irregularity physics and modeling the transionosphere radio wave propagation. Besides, the GPS TEC representation of the ST-generated ionospheric structure suggests a better possibility for investigating this phenomenon. Subsequently, there are scientific meaning of the result of this dissertation to deeply discuss the energy transfer and coupling in the ionosphere, as well as realistic value to space weather forecast in the ionosphere region.
Resumo:
Because of its sensitivity to the velocity discontinuity of the earth, receiver function technique has become a routine procedure used to probe interior structure of the earth. Receiver functions contain anisotropic information of the earth’s interior, however, traditional receiver function techniques such as migration imaging and waveform inversion method, which are based on isotropic media assumption, can not effectively extract the anisotropy information contained in the azimuth variation pattern. Only by using the anisotropic media, e.g. a model with symmetric axis of arbitrary orientation, computing the response, can we obtain the detailed anisotropy information hidden in the radial and transversal receiver function. Focusing on the receiver function variation pattern changing wtih different back azimuths, we introduced different kinds of symmetric systems of seismic anisotropy used often, and summarized some possible causes of anisotropy formation. We show details about how to calculate the response of a stratified anisotropy model with symmetric axis of arbitrary orientation. We also simulated receiver functions among different models and analyzed how the changing of anisotropic parameters influence the azimuth variation pattern of receiver functions. The anisotropy study by receiver function analysis was applied to Taihang Mountain Range (TMR) in North China in this thesis. The maximum entropy spectrum deconvolution technique was used to extract radial and transversal receiver functions from the waveforms of 20 portable seismic stations deployed in TMR. Considering the signal-to-noise ratio and the azimuth coverage, we got the variation pattern of receiver functions for 11 stations. After carefully analyzing the pattern of the receiver functions that we got, we obtained the reliable evidence on the existence of anisotropy in the shallow crust in TMR. Our results show that, although the thickness of the upper crustal layer is only about 1 km, the layer shows a strong anisotropy with magnitude of 8~15%; in the deeper of crust, the magnitudes of anisotropy is about 3%~5%, showing a pattern with fast-symmetric-axis. The crust anisotropy beneath TMR in North China obtained in this study also shows a significant difference in both the lateral and vertical scale, which might imply a regional anisotropy characteristic in the studied region.
Resumo:
There are two major problems that have been concerned all the times, which are the mechanics characters of joint rock mass and the criterion for stability of engineering rock. Aim at the two problems, several works were conducted as follow: (1) Firstly, the mechanics characters of rock mass was studied by means of the Distinct Element Code. Subsequently, it was studied that the sensibility of joint surface roughness, strength of joint wall, joint stiffness ( i.e. tangential and normal stiffness) on the rock mass strength. (2) Based on the experimental rock mass classification methods of RMR and GSI, the program of “Parameters Calculation of the Rock Mass ” was developed. It has realized the rapid choice of rock mass parameters. (3) The concept of Representive Element Volume was induced based on the study of dimensional effect of rock mass. The Representive Element Volume of the horizontal and vertical pillar (ab. Two Pillars ) in the 2nd zone of Jinchuan mine were gained by the Geology Statistic Method and the Distinct Element Code. And then, the strength and deformatiom parameters of rock mass of the Two Pillars were obtained through numerical experiment. (4) From the confining depressure after thriaxial compression test of rock sample, it was concluded that the failure of rock is caused mainly by the lateral deformation and energy release happened during the confining depressure processure. The criterion of plastic energy catastrophe of rock engineering failure was proposed and validated. Subsquently, the stability of the horizontal pillar and Qianjiangping landslide in Three Gorges was judged by means of above-mentioned method. (5) Based on the fact there is a phenomenon of increasing energy concentration while the rock mass was compressed, rock information entropy (i.e. energy distribution entropy) was proposed. And it was revealed that there was change of energy distribution entropy while the rock mass was compressed to failure.
Resumo:
The determination of the composition and structure of the Earth’s inner core has long been the major subject in the study of the Earth’s deep interior. It’s widely believed that the Earth’s core is formed by iron with a fraction of nickel. However, light elements must exist in the inner core because the earth core is less dense than pure iron-nickel alloy (~2-3% in the solid inner core and ~6-7% in the liquid outer core). The questions are what and how much light element is there in the iron-nickel alloy. Besides the composition, the crystal structure of the iron with or without light element is also not well known. According to the seismological observations, the sound waves propagate 3-4% faster along the spin axis than in the equatorial plane. That means the inner core is anisotropic. The densest structure of iron-nickel alloy should be h.c.p structure under the very high pressures. However, the h,c,p structure does not propagate waves anisotropic ally. Then what is the structure of the iron-nickel alloy or the iron-nickle-light element alloy. In this study, we tried to predict the composition and the structure of the inner core through ab initio calculation of the Gibbs free energy, which is a function of internal energy, density and entropy. We conclude that the h.c.p structure is more stable than the b.c.c structure under high pressure and 0 K, but with the increase of temperature, the free energy of the b.c.c structure is decreasing much faster than the h.c.p structure caused by the vibration of the atomics, so the b.c.c structure is more stable at high temperatures. With the addition of light elements (S or Si or both), the free energy of b.c.c. decreases even faster, about 3at% of Si not only explains why the inner core is about 2-3 % lighter than the iron-nickle alloy, but also reasons why the inner core is anisotropic, since the b.c.c. structure becomes more stable than the h.c.p structure at 5500-6000K and b.c.c. is anisotropic in propagating seismic waves. Therefore, we infer that the inner core of the earth is formed by b.c.c iron and a fraction of nickel plus ~3at.% Si, with a temperature higher than 5500K, which is consistent with the studies from other approaches.