941 resultados para Carbonyl compound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chemically Modified Electrodes (CME) are widely used in electroanalytical chemistry as chemical sensors. The interest in the covalent anchoring of a redox mediator on the electrode surface is increasing, because it allows the sensibility and the selectivity of this kind of systems to improve. My work is situated in this field of research and involves the synthesis of new Iron(0) complexes that contain cyclopentadienone, N-heterocyclic carbene (NHC) and carbonyl ancillary ligands. These complexes have shown electrochemical properties similar to those of ferrocene (organometallic compound widely used as electrochemical sensor). These complexes have been properly functionalized with a EDOT group in the NHC ligand side chain that it was after used for the realization of Electrochemically Modified PEDOT thanks to copolymerization reaction between the functionalized complex and the EDOT in different amounts. All the synthetic steps were assisted by suitable characterizations (NMR, IR, ESI-MS, cyclic voltammetry and X-ray for the monomeric compound as imidazolium salt and NHC functionalized complexes; cyclic voltammetry, IR e SEM for the copolymers). The properties of the polymer as a selective sensor was preliminarily investigated for dopamine and 2-propanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar <110> GaAs nanowires and quantum dots grown by atmospheric MOCVD have been introduced to non-standard growth conditions such as incorporating Zn and growing them on free-standing suspended films and on 10° off-cut substrates. Zn doped nanowires exhibited periodic notching along the axis of the wire that is dependent on Zn/Ga gas phase molar ratios. Planar nanowires grown on suspended thin films give insight into the mobility of the seed particle and change in growth direction. Nanowires that were grown on the off-cut sample exhibit anti-parallel growth direction changes. Quantum dots are grown on suspended thin films and show preferential growth at certain temperatures. Envisioned nanowire applications include twin-plane superlattices, axial pn-junctions, nanowire lasers, and the modulation of nanowire growth direction against an impeding barrier and varying substrate conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the relative contribution of natural productivity and compound food to the growth of the juvenile blue shrimp Litopenaeus stylirostris reared in a biofloc system. Two experiments were carried out based on the same protocol with three treatments: clear water with experimental diet (CW), biofloc with experimental diet (BF) and biofloc unfed (BU). Shrimp survival was significantly higher in biofloc rearing than in CW rearing. The contribution of the biofloc to shrimp diet was estimated through measurement of carbon and nitrogen stable isotope ratios in shrimp and food sources. Different isotopic compositions between feeds were obtained by feeding natural productivity with a mixture rich in fish meal and the shrimps with a pellet containing a high level of soy protein concentrate. Using a two source one-isotope mixing model, we found that the natural productivity of the biofloc system contributed to shrimp growth at a level of 39.8% and 36.9%, for C and N, respectively. The natural food consumed by the shrimps reared in the biofloc system resulted in higher gene expression (mRNA transcript abundance) and activities of two digestive enzymes in their digestive gland: α-amylase and trypsin. The growth of shrimp biomass reared in biofloc was, on average, 4.4 times that of those grown in clear water. Our results confirmed the best survival and promoted growth of shrimps using biofloc technology and highlighted the key role of the biofloc in the nutrition of rearing shrimps. Statement of relevance In this study, we have applied an original protocol to determine the respective contribution of natural productivity and artificial feeds on the alimentation of the juvenile blue shrimp L. stylirostris reared in biofloc system by using C and N natural stable isotope analysis. Moreover, we have compared, in shrimp digestive gland, the α-amylase and trypsin enzyme activities at biochemical and molecular levels for two different shrimp rearing systems, biofloc and clear water. In our knowledge, the use of molecular tool to study the influence of biofloc consumption on digest process of shrimp was never carried out. We think that our research is new and important to increase knowledge on biofloc topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Parabolic Trough (PT) is the most used concentrator in CSP (Concentrated Solar Power). However, this concentrator technology is facing a significant challenge to increase its overall efficiency and cost-effectiveness. Meanwhile, other low-cost solutions such as Fresnel concentrators are also being perceived as potentially attractive. In order to achieve the lower cost goal, new optical solutions can be considered, in parallel with improvements coming, for instance, through the use of new materials or manufacturing solutions. But conventional PTs can still be improved to yield, for instance, higher concentration values, a possible starting point for higher conversion efficiency. These new solutions, in turn, can also be useful for other technologies and applications (Fresnel Concentrators, Central Tower Receivers, etc.). However it is easier to develop and test these solutions in conjunction with parabolic primaries (continuum primary). And that is the topic of this paper: to present a new Compound Elliptical-type Concentrator for a parabolic primary with a tubular receiver. A comparison is made between this new concentrator and two other concentrators (a conventional PT concentrator and a XX SMS (Simultaneous Multiple Surface) concentrator), as well as a calculation of the total amount of collected energy (kW h) for a particular location, Faro (Portugal). The paper ends with a discussion of the results obtained, their impact and possible applications in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alginate microgels are widely used as delivery systems in food, cosmetics, and pharmaceutical industries for encapsulation and sustained release of hydrophilic compounds and cells. However, the encapsulation of lipophilic molecules inside these microgels remains a great challenge because of the complex oil-core matrix required. The present study describes an original two-step approach allowing the easy encapsulation of several oil microdroplets within alginate microgels. In the first step, stable oil microdroplets were formed by preparing an oil-in-water (O/W) Pickering emulsion. To stabilize this emulsion, we used two solid particles, namely the cotton cellulose nanocrystals (CNC) and calcium carbonate (CaCO3). It was observed that the surface of the oil microdroplets formed was totally covered by a CNC layer, whereas CaCO3 particles were adsorbed onto the cellulose layer. This solid CNC shell efficiently stabilized the oil microdroplets, preventing them from undesired coalescence. In the second step, oil microdroplets resulting from the Pickering emulsion were encapsulated within alginate microgels using microfluidics. Precisely, the outermost layer of oil microdroplets composed of CaCO3 particles was used to initiate alginate gelation inside the microfluidic device, following the internal gelation mode. The released Ca2+ ions induced the gel formation through physical cross-linking with alginate molecules. This innovative and easy to carry out two-step approach was successfully developed to fabricate monodisperse alginate microgels of 85 pm in diameter containing around 12 oil microdroplets of 15 mu m in diameter. These new oil-core alginate microgels represent an attractive system for encapsulation of lipophilic compounds such as vitamins, aroma compounds or anticancer drugs that could be applied in various domains including food, cosmetics, and medical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is global concern that soil and water were contaminated with organic substances such as BTEX (benzene) (B), toluene (T) and xylene (x) .The presence of excessive amounts of BTEX in aqueous surroundings may have a greatly adverse impact on water quality and thus endanger public health and welfare. Carbon nanotubes (CNT) have aroused widespread attention as a new type of adsorptions due to their outstanding ability for the removal of various inorganic and organic pollutants from large volume of wastewater. Due to variety of adsorbent and their ability to adsorb pollutant, it is possible to reduce expenses and completely omit pollutant. In this CNT is used as a new adsorbent for removal pollutant such as benzene, toluene, and xylene. The result in the area of adsorbing benzene, toluene, and xylene is as follows: the changes of pH don’t affect the capacity of adsorption and the greatest amount of adsorption occurs in pH. The greatest amount of adsorption occurs when using 0.01gr CNT oxidized. Comparing CNT with CNT oxidized in term of adsorption capacity, it is proved that the adsorption capacity of CNT oxidized is much more than CNT. The result of comparing the percentage of adsorption of mentioned elements (B, X, T) is as follows; the amount of adsorption of xylene is more than toluene and toluene is more than benzene. It should be mentioned that in this research the percentage of adsorption to measure is between to 70-80.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years marine biotechnology has revealed a crucial role in the future of bioindustry. Among the many marine resources, cyanobacteria have shown great potential in the production of bioactive compounds with diverse applicability. The pharmacological potential of these organisms has been one of the most explored areas in particular its antibacterial, antifungal and anticancer potential. This work was based on the assessment of potential anticancer compound E13010 F 5.4 isolated from marine cyanobacteria strain Synechocystis salina LEGE 06099. Thus the aim of this work was to explore molecular and biochemical mechanisms underlying the bioactivity detected in human cancer cells, specifically in lines RKO colon carcinoma and HT-29. The isolation of the compound was performed from biomass obtained by large-scale culture. To obtain the compound fractionation was carried and confirmation and isolation performed by Nuclear Magnetic Resonance (NMR), Thin Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC). Cell viability assays were performed based on reduction of 3- (4,5-dimetiltiaziol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) to assess the cytotoxic potential of the compound. From the battery of cell lines RKO (colon carcinoma), HT-29 (colorectal adenocarcinoma), MG-63 (osteosarcoma) and T47D (breast carcinoma) the cell lines RKO and HT-29 were selected for elucidation of mechanisms of cytotoxicity. For the elucidation of the mechanisms involved in cytotoxicity the cell lines RKO and HT29 were exposed to the compound. A genomic approach based in the mRNA expression of genes involved in apoptosis and cell cycle by Real-Time PCR and a proteomic approach based on the separation of proteins by two-dimensional electrophoresis (2DGE) was performed. For mRNA expression were selected the genes RPL8, HPRT1, VDAC, SHMT2, CCNE, CCNB1, P21CIP, BCL-2 and BAD and for proteomics isoelectric focussing between 3 – 10 and molecular weight of 19 – 117 kDa separated by polyacrylamide gels (2DGE). The MTT results confirmed the reduction of the cell viability. The RT-PCR results for the expression of genes studied were not yet fully elucidative. For the cell line RKO there was a significant reduction in the expression of the gene P21CIP, and a tendency for reduction in the BAD gene expression and for increased expression of gene CCNB1, pointing to an effort for cell proliferation. In HT-29 cell line, there was a tendency for increase in the expression of P21CIP and BAD, which may explain the reduction in cell viability. The 2DGE results indicate proteomic patterns with differentially altered spots in the treated and control cells with both qualitative and quantitative differences, and differences in response between the RKO and HT-29 cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosomiasis is still an endemic disease in many regions, with 250 million people infected with Schistosoma and about 500,000 deaths per year. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment, however it is classified as Class II in the Biopharmaceutics Classification System, as its low solubility hinders its performance in biological systems. The use of cyclodextrins is a useful tool to increase the solubility and bioavailability of drugs. The aim of this work was to prepare an inclusion compound of PZQ and methyl-beta-cyclodextrin (MeCD), perform its physico-chemical characterization, and explore its in vitro cytotoxicity. SEM showed a change of the morphological characteristics of PZQ:MeCD crystals, and IR data supported this finding, with changes after interaction with MeCD including effects on the C-H of the aromatic ring, observed at 758 cm(-1). Differential scanning calorimetry measurements revealed that complexation occurred in a 1:1 molar ratio, as evidenced by the lack of a PZQ transition temperature after inclusion into the MeCD cavity. In solution, the PZQ UV spectrum profile in the presence of MeCD was comparable to the PZQ spectrum in a hydrophobic solvent. Phase solubility diagrams showed that there was a 5.5-fold increase in PZQ solubility, and were indicative of a type A(L) isotherm, that was used to determine an association constant (K(a)) of 140.8 M(-1). No cytotoxicity of the PZQ:MeCD inclusion compound was observed in tests using 3T3 cells. The results suggest that the association of PZQ with MeCD could be a good alternative for the treatment of schistosomiasis.