973 resultados para Carbon loss
Resumo:
Carbon nanotubes (CNTs) and graphene are two representative nanomaterials comprised of purely element carbon [1,2]. Graphene is the two-dimensional, hexagonal sp2-carbon ring networks with one atomic layer thickness, while CNTs can be envisaged as one or several graphene sheets concentrically rolled up into a one-dimensional cylindrical structure, so-called singlewalled (SW) or multi-walled (MW) CNTs, respectively. Figure 12.1 shows the schematic diagram of structures of graphene, SWCNT and MWCNT. Owing to their exceptional mechanical, electrical, optical and thermal properties, CNTs and graphene have been widely considered as a new type of materials with great potentials to revolutionalize many of the biological and medical fields [3–5].
Resumo:
Many protocols have been used for extraction of DNA from Thraustochytrids. These generally involve the use of CTAB, phenol/chloroform and ethanol. They also feature mechanical grinding, sonication, N2 freezing or bead beating. However, the resulting chemical and physical damage to extracted DNA reduces its quality. The methods are also unsuitable for large numbers of samples. Commercially-available DNA extraction kits give better quality and yields but are expensive. Therefore, an optimized DNA extraction protocol was developed which is suitable for Thraustochytrids to both minimise expensive and time-consuming steps prior to DNA extraction and also to improve the yield. The most effective method is a combination of single bead in TissueLyser (Qiagen) and Proteinase K. Results were conclusive: both the quality and the yield of extracted DNA were higher than with any other method giving an average yield of 8.5 µg/100 mg biomass.
Resumo:
Hybrid urchin-like nanostructures composed of a spherical onion-like carbon (OLC) core and MoS2 nanoleaves were synthesized by a simple solvothermal method followed by thermal annealing treatment. Compared to commercial MoS2 powder, MoS2/OLC nanocomposites exhibit enhanced electrochemical performance as anode materials of lithium-ion batteries (LIBs) with a specific capacity of 853 mA h g−1 at a current density of 50 mA g−1 after 60 cycles, and a moderate initial coulombic efficiency of 71.1%. Furthermore, a simple pre-lithiation method based on direct contact of lithium foil with MoS2/OLC nano-urchins was used to achieve a very high coulombic efficiency of 97.6% in the first discharge/charge cycle, which is at least 26% higher compared to that of pristine MoS2/OLC nano-urchins. This pre-lithiation method can be generalized to develop other carbon-metal sulfide nanohybrids for LIB anode materials. These results may open up a new avenue for the development of the next-generation high-performance LIBs.
Resumo:
OBJECTIVE: To evaluate the effectiveness of a telephone-delivered behavioral weight loss and physical activity intervention targeting Australian primary care patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: Pragmatic randomized controlled trial of telephone counseling (n = 151) versus usual care (n = 151). Reported here are 18-month (end-of-intervention) and 24-month (maintenance) primary outcomes of weight, moderate-to-vigorous-intensity physical activity (MVPA; via accelerometer), and HbA1c level. Secondary outcomes include dietary energy intake and diet quality, waist circumference, lipid levels, and blood pressure. Data were analyzed via adjusted linear mixed models with multiple imputation of missing data. RESULTS: Relative to usual-care participants, telephone counseling participants achieved modest, but significant, improvements in weight loss (relative rate [RR] -1.42% of baseline body weight [95% CI -2.54 to -0.30% of baseline body weight]), MVPA (RR 1.42 [95% CI 1.06-1.90]), diet quality (2.72 [95% CI 0.55-4.89]), and waist circumference (-1.84 cm [95% CI -3.16 to -0.51 cm]), but not in HbA1c level (RR 0.99 [95% CI 0.96-1.02]), or other cardio-metabolic markers. None of the outcomes showed a significant change/deterioration over the maintenance period. However, only the intervention effect for MVPA remained statistically significant at 24 months. CONCLUSIONS: The modest improvements in weight loss and behavior change, but the lack of changes in cardio-metabolic markers, may limit the utility, scalability, and sustainability of such an approach.
Resumo:
The enhanced large-scale model and numerical simulations are used to clarify the growth mechanism and the differences between the plasma- and neutral gas-grown carbon nanotubes, and to reveal the underlying physics and the key growth parameters. The results show that the nanotubes grown by plasma can be longer due to the effects of hydrocarbon ions with velocities aligned with the nanotubes. We show that the low-temperature growth is possible when the hydrocarbon ion flux dominates over fluxes of other species. We have also analysed the dependencies of the nanotube growth rates on nanotube and process parameters. The results are verified by a direct comparison with the experimental data. The model is generic and can be used for other types of carbon nanostructures such as carbon nanowalls, vertical graphenes, etc.
Resumo:
Control over nucleation and growth of multi-walled carbon nanotubes in the nanochannels of porous alumina membranes by several combinations of posttreatments, namely exposing the membrane top surface to atmospheric plasma jet and application of standard S1813 photoresist as an additional carbon precursor, is demonstrated. The nanotubes grown after plasma treatment nucleated inside the channels and did not form fibrous mats on the surface. Thus, the nanotube growth mode can be controlled by surface treatment and application of additional precursor, and complex nanotube-based structures can be produced for various applications. A plausible mechanism of nanotube nucleation and growth in the channels is proposed, based on the estimated depth of ion flux penetration into the channels.
Resumo:
The isolation of islets by collagenase digestion can cause damage and impact the efficiency of islet engraftment and function. In this study, we assessed the basement membranes (BMs) of mouse pancreatic islets as a molecular biomarker for islet integrity, damage after isolation, and islet repair in vitro as well as in the absence or presence of an immune response after transplantation. Immunofluorescence staining of BM matrix proteins and the endothelial cell marker platelet endothelial cell adhesion molecule-1 (PECAM-1) was performed on pancreatic islets in situ, isolated islets, islets cultured for 4 days, and islet grafts at 3-10 days posttransplantation. Flow cytometry was used to investigate the expression of BM matrix proteins in isolated islet β-cells. The islet BM, consisting of collagen type IV and components of Engelbreth-Holm-Swarm (EHS) tumor laminin 111, laminin α2, nidogen-2, and perlecan in pancreatic islets in situ, was completely lost during islet isolation. It was not reestablished during culture for 4 days. Peri- and intraislet BM restoration was identified after islet isotransplantation and coincided with the migration pattern of PECAM-1(+) vascular endothelial cells (VECs). After islet allotransplantation, the restoration of VEC-derived peri-islet BMs was initiated but did not lead to the formation of the intraislet vasculature. Instead, an abnormally enlarged peri-islet vasculature developed, coinciding with islet allograft rejection. The islet BM is a sensitive biomarker of islet damage resulting from enzymatic isolation and of islet repair after transplantation. After transplantation, remodeling of both peri- and intraislet BMs restores β-cell-matrix attachment, a recognized requirement for β-cell survival, for isografts but not for allografts. Preventing isolation-induced islet BM damage would be expected to preserve the intrinsic barrier function of islet BMs, thereby influencing both the effector mechanisms required for allograft rejection and the antirejection strategies needed for allograft survival.
Resumo:
Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.
Resumo:
A simple one-step electrodeposition method was used to construct a glassy carbon electrode (GCE), which has been modified with Cu doped gold nanoparticles (GNPs), i.e. a Cu@AuNPs/GCE. This electrode was characterized with the use of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The eugenol was electrocatalytically oxidized at the Cu@AuNPs/GCE. At this electrode, in comparison with the behavior at the GCE alone, the corresponding oxidation peak current was enhanced and the shift of the oxidation potentials to lower values was observed. Electrochemical behavior of eugenol at the Cu@AuNPs/GCE was investigated with the use of the cyclic voltammetry (CV) technique, and additionally, in order to confirm the electrochemical reaction mechanism for o-methoxy phenols, CVs for catechol, guaiacol and vanillin were investigated consecutively. Based on this work, an electrochemical reaction mechanism for o-methoxy phenols was suggested, and in addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples.
Resumo:
Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance.
Resumo:
Simple, rapid, plasma-assisted synthesis of large-area arrays of vertically-aligned carbon nanowalls on highly-porous, transparent bare and gold-coated alumina membranes with the two pore sizes is reported. It is demonstrated that the complex patterns of vertically aligned nanowalls can nucleate and form different morphologies in the low-temperature plasmas. The process is stable, and the twofold change in the gas flow (10 and 20 sccm) does not noticeably influence the morphology of the nanowall pattern. Application of a thin (5 nm) gold layer to nanoporous membrane prior to the nanowall growth allows controlling the network morphology.
Resumo:
Changes at work are often accompanied with the threat of, or actual, resource loss. Through an experiment, we investigated the detrimental effect of the threat of resource loss on adaptive task performance. Self-regulation (i.e., task focus and emotion control) was hypothesized to buffer the negative relationship between the threat of resource loss and adaptive task performance. Adaptation was conceptualized as relearning after a change in task execution rules. Threat of resource loss was manipulated for 100 participants undertaking an air traffic control task. Using discontinuous growth curve modeling, 2 kinds of adaptation—transition adaptation and reacquisition adaptation—were differentiated. The results showed that individuals who experienced the threat of resource loss had a stronger drop in performance (less transition adaptation) and a subsequent slower recovery (less reacquisition adaptation) compared with the control group who experienced no threat. Emotion control (but not task focus) moderated the relationship between the threat of resource loss and transition adaptation. In this respect, individuals who felt threatened but regulated their emotions performed better immediately after the task change (but not later on) compared with those individuals who felt threatened and did not regulate their emotions as well. However, later on, relearning (reacquisition adaptation) under the threat of resource loss was facilitated when individuals concentrated on the task at hand.
Resumo:
There is limited research on the driving performance and safety of bioptic drivers and even less regarding the driving skills that are most challenging for those learning to drive with bioptic telescopes. This research consisted of case studies of five trainee bioptic drivers whose driving skills were compared with those of a group of licensed bioptic drivers (n = 23) while they drove along city, suburban, and controlled-access highways in an instrumented dual-brake vehicle. A certified driver rehabilitation specialist was positioned in the front passenger seat to monitor safety and two backseat evaluators independently rated driving using a standardized scoring system. Other aspects of performance were assessed through vehicle instrumentation and video recordings. Results demonstrate that while sign recognition, lane keeping, steering steadiness, gap judgments and speed choices were significantly worse in trainees, some driving behaviors and skills, including pedestrian detection and traffic light recognition were not significantly different to those of the licensed drivers. These data provide useful insights into the skill challenges encountered by a small sample of trainee bioptic drivers which, while not generalizable because of the small sample size, provide valuable insights beyond that of previous studies and can be used as a basis to guide training strategies.
Resumo:
The nature of amorphous carbon has been explored by molecular mechanics by examining the structures of species such as C84Hx and C150Hx, wherein the percentage of sp(3) carbons is progressively increased in a graphitic network. The nature of diamond-like carbon has been similarly investigated by examining the structures of C84Hx and C102Hx where the percentage of sp(2) carbons is varied in an sp(3) network. The dependence of the average coordination number as well as the sp(3)/sp(2) atom ratio on the atom fraction of hydrogen has been investigated in light of the random covalent network model.
Resumo:
Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a multi-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March-May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each ill Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 mu g m(3) over industrial/urban locations to as low as 0.065 mu g m(-3) over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December-February) to pre-monsoon (March-May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with all afternoon low and a nighttime high: (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL), At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May, This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic, An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.