922 resultados para CORNEAL ULCERS
Resumo:
Sixty-one animals with different Halothane genes (homozygous halothane positive, n=34; and homozygous halothane negative, n=27) were fed with three diets (controlgroup, with no supplement; magnesium (Mg) group with 1.28g MgCO3/kg and tryptophan (Trp) group with 5g L-Trp/kg) during the last 5 days before slaughter. Animals were submitted to minimal stress ante mortem conditions. Pig behaviour was recorded at the experimental farm, raceway to the CO2 stunning system and during the stunning period. Corneal reflexes were recorded after stunning as well. There were no differences in feed intake among diets (p>0.05) during the 5 days of treatment. The halothane positive (nn) group had lower intake than the halothane negative (NN) group (p<0.01). The behaviour of the pigs in the raceway did not differ (p>0.05) among treatments or halothane genotype. A significant (p<0.001) interaction diet*halothane was found in the time to appear the first retreat attempt during the exposure to the CO2 system. In the nn group, the time of performing the first retreat attempt was later in the Mg (p<0.05) than the Control group. Moreover, in the Mg group, the nn had a later (p<0.05) first retreat attempt than the NN. Thus, Mg supplementation could have a positive effect on welfare of nn pigs. The nn had a lower proportion of animals that showed corneal reflexes after stunning than NN, indicating a higher effectiveness of the stunning method in nn pigs. Neither Mg nor Trp affected carcass quality and meat quality parameters, although significant differences were found between genotypes
Resumo:
“Estudo da Incidência e Prevalência de Úlceras de Pressão na Unidade de Autonomia e Bem-Estar da Encarnação” é o título desta dissertação, cujo principal objectivo se constituiu como a determinação das taxas de incidência e prevalência de Úlceras de Pressão, caracterização dos utentes e das Úlceras de Pressão, bem como dos comportamentos dos profissionais relacionados com as mesmas, na referida Unidade e no primeiro semestre de 2012. O estudo é não experimental, perspectivo e descritivo correlacional, tendo-se obtido dados de todos os utentes que desenvolveram e apresentaram Úlcera(s) de Pressão enquanto internados na Unidade de Promoção de Autonomia e Bem-Estar da Encarnação e integrados na Rede Nacional de Cuidados Continuados Integrados, no primeiro semestre de 2012. Observa-se que a população estudada é marcadamente envelhecida, dependente e a maior parte dos seus indivíduos apresenta Elevado Risco de desenvolver Úlceras de Pressão. Obteve-se um valor de Taxa de Incidência de Úlceras de Pressão de 1,02%. A referir que a maior parte das Úlceras de Pressão desenvolvidas ocorreu na Tipologia de Média-Duração e Reabilitação. No que diz respeito à Taxa de Prevalência, o valor obtido foi de 11,46%. Também na prevalência se demarca a tipologia de Média-Duração e Reabilitação, com o maior número de casos observado. Pode afirmar-se com a realização deste estudo que existem vários handicaps nos cuidados preventivos e de manutenção em indivíduos com Úlceras de Pressão na UPABE, nomeadamente na aplicação de Material de Prevenção, na administração de Suplementação Nutricional Oral e na diversificação de Rotinas de Posicionamento/mobilização. O Diagnóstico de Admissão dos utentes onde a incidência e prevalência de Úlceras de Pressão se verificaram em maior número foi o Acidente Vascular Cerebral. Neste estudo, classificou-se a amostra como não probabilística por conveniência, correspondente à população alvo identificável ou população acessível.
Resumo:
Background/aims: Scant consideration has been given to the variation in structure of the human amniotic membrane (AM) at source or to the significance such differences might have on its clinical transparency. Therefore, we applied our experience of quantifying corneal transparency to AM. Methods: Following elective caesarean, AM from areas of the fetal sac distal and proximal (ie, adjacent) to the placenta was compared with freeze-dried AM. The transmission of light through the AM samples was quantified spectrophotometrically; also, tissue thickness was measured by light microscopy and refractive index by refractometry. Results: Freeze-dried and freeze-thawed AM samples distal and proximal to the placenta differed significantly in thickness, percentage transmission of visible light and refractive index. The thinnest tissue (freeze-dried AM) had the highest transmission spectra. The thickest tissue (freeze-thawed AM proximal to the placenta) had the highest refractive index. Using the direct summation of fields method to predict transparency from an equivalent thickness of corneal tissue, AM was found to be up to 85% as transparent as human cornea. Conclusion: When preparing AM for ocular surface reconstruction within the visual field, consideration should be given to its original location from within the fetal sac and its method of preservation, as either can influence corneal transparency.
Resumo:
We have investigated differences in bovine limbal epithelial cell differentiation when expanded upon intact (amniotic epithelial cells and basement membrane remaining) and denuded human amniotic membrane, a commonly used substrate in ophthalmic surgery for corneal stem cell transplantation. Ex vivo expansion of the epithelial cells, in supplemented media, continued for 2 weeks followed by 1 week under ‘air-lifting’ conditions. Before and after air-lifting the differentiated (K3/K12 positive) and undifferentiated (K14 positive) cells were quantified by immunohistochemistry, Western blotting and quantitative PCR. Limbal epithelial cells expanded upon amniotic membrane formed 4-6 stratified layers, both on intact and denuded amniotic membrane. On denuded amniotic membrane the proportion of differentiated cells remained unaltered following airlifting. Within cells grown on intact amniotic membrane, however, the number of differentiated cells increased significantly following air-lifting. These results have important implications for both basic and clinical research. Firstly, they show that bovine limbal epithelia can be used as an alternative source of cells for basic research investigating ex vivo limbal stem cells expansion. Secondly, these findings serve as a warning to clinicians that the affect of amniotic membrane on transplantable cells is not fully understood; the use of intact or denuded amniotic membrane can produce different results in terms of the amount of differentiation, once cells are exposed to the air.
Resumo:
In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Aims and objectives. To examine the impact of written and verbal education on bed-making practices, in an attempt to reduce the prevalence of pressure ulcers. Background. The Department of Health has set targets for a 5% reduction per annum in the incidence of pressure ulcers. Electric profiling beds with a visco-elastic polymer mattress are a new innovation in pressure ulcer prevention; however, mattress efficacy is reduced by tightly tucking sheets around the mattress. Design. A prospective randomized pre/post-test experimental design. Methods. Ward managers at a teaching hospital were approached to participate in the study. Two researchers independently examined the tightness of the sheets around the mattresses. Wards were randomized to one of two groups. Groups A and B received written education. In addition, group B received verbal education on alternate days for one week. Beds were re-examined one month later. One researcher was blinded to the educational delivery received by the wards. Results. Twelve wards agreed to participate in the study and 245 beds were examined. Before education, 113 beds (46%) had sheets tucked correctly around the mattresses. Following education, this increased to 215 beds (87.8%) (chi(2) = 68.03, P < 0.001). There was no significant difference in the number of correctly made beds between the two different education groups: 100 (87.72%) beds correctly made in group A vs. 115 (87.79%) beds in group B (chi(2) = 0, P 0.987). Conclusions. Clear, concise written instruction improved practice but verbal education was not additionally beneficial. Relevance to clinical practice. Nurses are receptive to clear, concise written evidence regarding pressure ulcer prevention and incorporate this into clinical practice.
Resumo:
The early eighties saw the introduction of liposomes as skin drug delivery systems, initially promoted primarily for localised effects with minimal systemic delivery. Subsequently, a novel ultradeformable vesicular system (termed "Transfersomes" by the inventors) was reported for transdermal delivery with an efficiency similar to subcutaneous injection. Further research illustrated that the mechanisms of liposome action depended on the application regime and the vesicle composition and morphology. Ethical, health and supply problems with human skin have encouraged researchers to use skin models. 'IYaditional models involved polymer membranes and animal tissue, but whilst of value for release studies, such models are not always good mimics for the complex human skin barrier, particularly with respect to the stratum corneal intercellular lipid domains. These lipids have a multiply bilayered organization, a composition and organization somewhat similar to liposomes, Consequently researchers have used vesicles as skin model membranes. Early work first employed phospholipid liposomes and tested their interactions with skin penetration enhancers, typically using thermal analysis and spectroscopic analyses. Another approach probed how incorporation of compounds into liposomes led to the loss of entrapped markers, analogous to "fluidization" of stratum corneum lipids on treatment with a penetration enhancer. Subsequently scientists employed liposomes formulated with skin lipids in these types of studies. Following a brief description of the nature of the skin barrier to transdermal drug delivery and the use of liposomes in drug delivery through skin, this article critically reviews the relevance of using different types of vesicles as a model for human skin in permeation enhancement studies, concentrating primarily on liposomes after briefly surveying older models. The validity of different types of liposome is considered and traditional skin models are compared to vesicular model membranes for their precision and accuracy as skin membrane mimics. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We compare the use of plastically compressed collagen gels to conventional collagen gels as scaffolds onto which corneal limbal epithelial cells (LECs) are seeded to construct an artificial corneal epithelium. LECs were isolated from bovine corneas (limbus) and seeded onto either conventional uncompressed or novel compressed collagen gels and grown in culture. Scanning electron microscopy (SEM) results showed that fibers within the uncompressed gel were loose and irregularly ordered, whereas the fibers within the compressed gel were densely packed and more evenly arranged. Quantitative analysis of LECs expansion across the surface of the two gels showed similar growth rates (p > 0.05). Under SEM, the LECs, expanded on uncompressed gels, showed a rough and heterogeneous morphology, whereas on the compressed gel, the cells displayed a smooth and homogeneous morphology. Transmission electron microscopy (TEM) results showed the compressed scaffold to contain collagen fibers of regular diameter and similar orientation resembling collagen fibers within the normal cornea. TEM and light microscopy also showed that cell–cell and cell–matrix attachment, stratification, and cell density were superior in LECs expanded upon compressed collagen gels. This study demonstrated that the compressed collagen gel was an excellent biomaterial scaffold highly suited to the construction of an artificial corneal epithelium and a significant improvement upon conventional collagen gels.
Resumo:
Background: Identification of stem cells from a corneal epithelial cell population by specific molecular markers has been investigated previously. Expressions of P63, ABCG2 and K14/K5 have all been linked to mammalian corneal epithelial stem cells. Here we report on the limitations of K14/K5 as a limbal stem cell marker. Methodology/Principal Findings: K14/K5 expression was measured by immunohistochemistry, Western blotting and Real time PCR and compared between bovine epithelial cells in the limbus and central cornea. A functional study was also included to investigate changes in K5/14 expression within cultured limbal epithelial cells undergoing forced differentiation. K14 expression (or its partner K5) was detected in quiescent epithelial cells from both the limbal area and central cornea. K14 was localized predominantly to basal epithelial cells in the limbus and suprabasal epithelial cells in the central cornea. Western blotting revealed K14 expression in both limbus and central cornea (higher levels in the limbus). Similarly, quantitative real time PCR found K5, partner to K14, to be expressed in both the central cornea and limbus. Following forced differentiation in culture the limbal epithelial cells revealed an increase in K5/14 gene/protein expression levels in concert with a predictable rise in a known differentiation marker. Conclusions/Significance: K14 and its partner K5 are limited not only to the limbus but also to the central bovine cornea epithelial cells suggesting K14/K5 is not limbal specific in situ. Furthermore K14/K5 expression levels were not lowered (in fact they increased) within a limbal epithelial cell culture undergoing forced differentiation suggesting K14/K5 is an unreliable maker for undifferentiated cells ex vivo.
Resumo:
Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.
Resumo:
The human amniotic membrane (AM) is a tissue of fetal origin and has proven to be clinically useful as a biomaterial in the management of various ocular surface disorders including corneal stem cell transplantation. However, its success rate displays a degree of clinical unpredictability. We suggest that the measured variability inAMstiffness offers an explanation for the poor clinical reproducibility when it is used as a substrate for stem cell expansion and transplantation. Corneal epithelial stem cells were expanded upon AM samples possessing different mechanical stiffness. To investigate further the importance of biological substrate stiffness on cell phenotype we replaced AM with type I collagen gels of known stiffness. Substrate stiffness was measured using shear rheometry and surface topography was characterized using scanning electron microscopy and atomic force microscopy. The differentiation status of epithelial cells was examined using RT-PCR, immunohistochemistry and Western blotting. The level of corneal stem cell differentiation was increased in cells expanded upon AM with a high dynamic elastic shear modulus and cell expansion on type I collagen gels confirmed that the level of corneal epithelial stem cell differentiation was related to the substrate’s mechanical properties. In this paper we provide evidence to show that the preparatory method of AM for clinical use can affect its mechanical properties and that these measured differences can influence the level of differentiation within expanded corneal epithelial stem cells.
Resumo:
Corneal blindness caused by limbal stem cell deficiency (LSCD) is a prevailing disorder worldwide. Clinical outcomes for LSCD therapy using amniotic membrane (AM) are unpredictable. Hydrogels can eliminate limitations of standard therapy for LSCD, because they present all the advantages of AM (i.e. biocompatibility, inertness and a biodegradable structure) but unlike AM, they are structurally uniform and can be easily manipulated to alter mechanical and physical properties. Hydrogels can be delivered with minimum trauma to the ocular surface and do not require extensive serological screening before clinical application. The hydrogel structure is also amenable to modifications which direct stem cell fate. In this focussed review we highlight hydrogels as biomaterial substrates which may replace and/or complement AM in the treatment of LSCD.
Resumo:
The collagen production of human dermal and corneal fibroblasts in contact with solutions of the peptide amphiphile (PA) C16–KTTKS is investigated and related to its self-assembly into nanotape structures. This PA is used in antiwrinkle cosmeceutical applications (trade name Matrixyl). We prove that C16–KTTKS stimulates collagen production in a concentration-dependent manner close to the critical aggregation concentration determined from pyrene fluorescence spectroscopy. This suggests that self-assembly and the stimulation of collagen production are inter-related.
Resumo:
The collagen production of human dermal and corneal fibroblasts in contact with solutions of the peptide amphiphile (PA) C16−KTTKS is investigated and related to its self-assembly into nanotape structures. This PA is used in antiwrinkle cosmeceutical applications (trade name Matrixyl). We prove that C16−KTTKS stimulates collagen production in a concentration-dependent manner close to the critical aggregation concentration determined from pyrene fluorescence spectroscopy. This suggests that self-assembly and the stimulation of collagen production are inter-related.
Resumo:
The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.