944 resultados para CONTINUOUS-VARIABLE SYSTEMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O estudo foi efetuado durante o período de chuva (dezembro-fevereiro) em seis viveiros de produção semi-intensiva de peixes, a fim de avaliar o efeito da chuva na qualidade da água de viveiros que apresentam fluxo contínuo de água, a qual é passada de um viveiro para outro sem tratamento prévio. Foram amostrados oito pontos de coleta nas saídas dos viveiros. O viveiro P1 (próximo à nascente) apresentou as menores concentrações físicas e químicas da água e as maiores no viveiro P4 (considerado um ponto crítico recebendo material alóctone proveniente de outros viveiros e do escoamento do setor de criação de rãs). A disposição seqüencial dos viveiros estudados promoveu aumento nas concentrações dos nutrientes, clorofila-a e condutividade. As chuvas características desta época do ano aumentaram o fluxo de água nos viveiros e conseqüentemente, carreando material particulado e dissolvido de um viveiro para outro e, promovendo um aumento das variáveis limnológicas em direção do P3 ao P6. Os resultados sugerem que a chuva no período de estudo afetou positivamente a qualidade da água dos viveiros estudados, porém, como os sistemas analisados estão dispostos em distribuição seqüencial e escoamento constante da água de viveiros e tanques paralelos sem tratamento prévio, cuidados devem ser averiguados para que o aumento do fluxo de água provocado pelas chuvas não tenha efeito adverso nos viveiros estudados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing Cyber-Physical Systems requires methods and tools to support simulation and verification of hybrid (both continuous and discrete) models. The Acumen modeling and simulation language is an open source testbed for exploring the design space of what rigorousbut- practical next-generation tools can deliver to developers of Cyber- Physical Systems. Like verification tools, a design goal for Acumen is to provide rigorous results. Like simulation tools, it aims to be intuitive, practical, and scalable. However, it is far from evident whether these two goals can be achieved simultaneously. This paper explains the primary design goals for Acumen, the core challenges that must be addressed in order to achieve these goals, the “agile research method” taken by the project, the steps taken to realize these goals, the key lessons learned, and the emerging language design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multivariate orthogonal polynomials in D real dimensions are considered from the perspective of the Cholesky factorization of a moment matrix. The approach allows for the construction of corresponding multivariate orthogonal polynomials, associated second kind functions, Jacobi type matrices and associated three term relations and also Christoffel-Darboux formulae. The multivariate orthogonal polynomials, their second kind functions and the corresponding Christoffel-Darboux kernels are shown to be quasi-determinants as well as Schur complements of bordered truncations of the moment matrix; quasi-tau functions are introduced. It is proven that the second kind functions are multivariate Cauchy transforms of the multivariate orthogonal polynomials. Discrete and continuous deformations of the measure lead to Toda type integrable hierarchy, being the corresponding flows described through Lax and Zakharov-Shabat equations; bilinear equations are found. Varying size matrix nonlinear partial difference and differential equations of the 2D Toda lattice type are shown to be solved by matrix coefficients of the multivariate orthogonal polynomials. The discrete flows, which are shown to be connected with a Gauss-Borel factorization of the Jacobi type matrices and its quasi-determinants, lead to expressions for the multivariate orthogonal polynomials and their second kind functions in terms of shifted quasi-tau matrices, which generalize to the multidimensional realm, those that relate the Baker and adjoint Baker functions to ratios of Miwa shifted tau-functions in the 1D scenario. In this context, the multivariate extension of the elementary Darboux transformation is given in terms of quasi-determinants of matrices built up by the evaluation, at a poised set of nodes lying in an appropriate hyperplane in R^D, of the multivariate orthogonal polynomials. The multivariate Christoffel formula for the iteration of m elementary Darboux transformations is given as a quasi-determinant. It is shown, using congruences in the space of semi-infinite matrices, that the discrete and continuous flows are intimately connected and determine nonlinear partial difference-differential equations that involve only one site in the integrable lattice behaving as a Kadomstev-Petviashvili type system. Finally, a brief discussion of measures with a particular linear isometry invariance and some of its consequences for the corresponding multivariate polynomials is given. In particular, it is shown that the Toda times that preserve the invariance condition lay in a secant variety of the Veronese variety of the fixed point set of the linear isometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The invention relates to a variable-spectrum solar simulator for characterising photovoltaic systems. The simulator can be used to obtain a spectrum adjusted to the solar spectrum, both for a standard spectrum or a real spectrum adjusted to local irradiation conditions. The simulator also allows the spatial-angular characteristics of the sun to be reproduced. The invention comprises: a broad-spectrum light source, the flux from which is emitted through an aperture; an optical system which collimates the primary source; a system which disperses the beam chromatically; an optical system which forms an image of the dispersed primary source at a given position, at which a spatial mask is placed in order to filter the received irradiance spectrally; an optical system which captures the filtered spectrum and returns, mixes and concentrates same in a secondary source with the desired spectral, angular, and spatial characteristics; an optical system which collimates the secondary source such that it reproduces the angular characteristics of the sun; and a control system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment processes are essential to guarantee quality and continuous improvement of software in healthcare, as they measure software attributes in their lifecycle, verify the degree of alignment between the software and its objectives and identify unpredicted events. This article analyses the use of an assessment model based on software metrics for three healthcare information systems from a public hospital that provides secondary and tertiary care in the region of Ribeirão Preto. Compliance with the metrics was investigated using questionnaires in guided interviews of the system analysts responsible for the applications. The outcomes indicate that most of the procedures specified in the model can be adopted to assess the systems that serves the organization, particularly in the attributes of compatibility, reliability, safety, portability and usability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fully articulated hand tracking promises to enable fundamentally new interactions with virtual and augmented worlds, but the limited accuracy and efficiency of current systems has prevented widespread adoption. Today's dominant paradigm uses machine learning for initialization and recovery followed by iterative model-fitting optimization to achieve a detailed pose fit. We follow this paradigm, but make several changes to the model-fitting, namely using: (1) a more discriminative objective function; (2) a smooth-surface model that provides gradients for non-linear optimization; and (3) joint optimization over both the model pose and the correspondences between observed data points and the model surface. While each of these changes may actually increase the cost per fitting iteration, we find a compensating decrease in the number of iterations. Further, the wide basin of convergence means that fewer starting points are needed for successful model fitting. Our system runs in real-time on CPU only, which frees up the commonly over-burdened GPU for experience designers. The hand tracker is efficient enough to run on low-power devices such as tablets. We can track up to several meters from the camera to provide a large working volume for interaction, even using the noisy data from current-generation depth cameras. Quantitative assessments on standard datasets show that the new approach exceeds the state of the art in accuracy. Qualitative results take the form of live recordings of a range of interactive experiences enabled by this new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider piecewise defined differential dynamical systems which can be analysed through symbolic dynamics and transition matrices. We have a continuous regime, where the time flow is characterized by an ordinary differential equation (ODE) which has explicit solutions, and the singular regime, where the time flow is characterized by an appropriate transformation. The symbolic codification is given through the association of a symbol for each distinct regular system and singular system. The transition matrices are then determined as linear approximations to the symbolic dynamics. We analyse the dependence on initial conditions, parameter variation and the occurrence of global strange attractors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest biomass has been having an increasing importance in the world economy and in the evaluation of the forests development and monitoring. It was identified as a global strategic reserve, due to its applications in bioenergy, bioproduct development and issues related to reducing greenhouse gas emissions. The estimation of above ground biomass is frequently done with allometric functions per species with plot inventory data. An adequate sampling design and intensity for an error threshold is required. The estimation per unit area is done using an extrapolation method. This procedure is labour demanding and costly. The mail goal of this study is the development of allometric functions for the estimation of above ground biomass with ground cover as independent variable, for forest areas of holm aok (Quercus rotundifolia), cork oak (Quercus suber) and umbrella pine (Pinus pinea) in multiple use systems. Ground cover per species was derived from crown horizontal projection obtained by processing high resolution satellite images, orthorectified, geometrically and atmospheric corrected, with multi-resolution segmentation method and object oriented classification. Forest inventory data were used to estimate plot above ground biomass with published allometric functions at tree level. The developed functions were fitted for monospecies stands and for multispecies stands of Quercus rotundifolia and Quercus suber, and Quercus suber and Pinus pinea. The stand composition was considered adding dummy variables to distinguish monospecies from multispecies stands. The models showed a good performance. Noteworthy is that the dummy variables, reflecting the differences between species, originated improvements in the models. Significant differences were found for above ground biomass estimation with the functions with and without the dummy variables. An error threshold of 10% corresponds to stand areas of about 40 ha. This method enables the overall area evaluation, not requiring extrapolation procedures, for the three species, which occur frequently in multispecies stands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing is a promising approach for above ground biomass estimation, as forest parameters can be obtained indirectly. The analysis in space and time is quite straight forward due to the flexibility of the method to determine forest crown parameters with remote sensing. It can be used to evaluate and monitoring for example the development of a forest area in time and the impact of disturbances, such as silvicultural practices or deforestation. The vegetation indices, which condense data in a quantitative numeric manner, have been used to estimate several forest parameters, such as the volume, basal area and above ground biomass. The objective of this study was the development of allometric functions to estimate above ground biomass using vegetation indices as independent variables. The vegetation indices used were the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Simple Ratio (SR) and Soil-Adjusted Vegetation Index (SAVI). QuickBird satellite data, with 0.70 m of spatial resolution, was orthorectified, geometrically and atmospheric corrected, and the digital number were converted to top of atmosphere reflectance (ToA). Forest inventory data and published allometric functions at tree level were used to estimate above ground biomass per plot. Linear functions were fitted for the monospecies and multispecies stands of two evergreen oaks (Quercus suber and Quercus rotundifolia) in multiple use systems, montados. The allometric above ground biomass functions were fitted considering the mean and the median of each vegetation index per grid as independent variable. Species composition as a dummy variable was also considered as an independent variable. The linear functions with better performance are those with mean NDVI or mean SR as independent variable. Noteworthy is that the two better functions for monospecies cork oak stands have median NDVI or median SR as independent variable. When species composition dummy variables are included in the function (with stepwise regression) the best model has median NDVI as independent variable. The vegetation indices with the worse model performance were EVI and SAVI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microplastics (MP) are omnipresent contaminants in the marine environment. Ingestion of MP has been reported for a wide range of marine biota, but to what extent the uptake by organisms affects the dynamics and fate of MP in the marine system has received little attention. My thesis explored this topic by integrating laboratory tests and experiments, field quantitative surveys of MP distribution and dynamics, and the use of specialised analytical techniques such as Attenuated-Total-Reflectance- (ATR) and imaging- Fourier Transformed Infrared Spectroscopy (FTIR). I compared different methodologies to extract MP from wild invertebrate specimens, and selected the use of potassium hydroxide (KOH) as the most cost-effective approach. I used this approach to analyse the MP contamination in various invertebrate species with different ecological traits from European salt marshes. I found that 96% of the analysed specimens (330) did not contain any MP. As preliminary environmental analyses showed high levels of environmental MP contamination, I hypothesised that most MP do not accumulate into organisms but are rather fast egested. I subsequently used laboratory multi-trophic experiments and a long-term field experiment using the filter-feeding mussel Mytilus galloprovincialis and the detritus feeding polychaete Hediste diversicolor to test the aforementioned hypothesis. Overall, results showed that MP are ingested but rapidly egested by marine invertebrates, which may limit MP transfer via predator-prey interactions but at the same time enhance their transfer via detrital pathways in the sediments. These processes seem to be extremely variable over time, with potential unexplored environmental consequences. This rapid dynamics also limits the conclusions that can be derived from static observations of MP contents in marine organisms, not fully capturing the real levels of potential contaminations by marine species. This emphasises the need to consider such dynamics in future work to measure the uptake rates by organisms in natural systems.