768 resultados para Building permits
Resumo:
This chapter aims to provide an overview of building simulation in a theoretical and practical context. The following sections demonstrate the importance of simulation programs at a time when society is shifting towards a low carbon future and the practice of sustainable design becomes mandatory. The initial sections acquaint the reader with basic terminology and comment on the capabilities and categories of simulation tools before discussing the historical development of programs. The main body of the chapter considers the primary benefits and users of simulation programs, looks at the role of simulation in the construction process and examines the validity and interpretation of simulation results. The latter half of the chapter looks at program selection and discusses software capability, product characteristics, input data and output formats. The inclusion of a case study demonstrates the simulation procedure and key concepts. Finally, the chapter closes with a sight into the future, commenting on the development of simulation capability, user interfaces and how simulation will continue to empower building professionals as society faces new challenges in a rapidly changing landscape.
Resumo:
The effect of the surrounding lower buildings on the wind pressure distribution on a high-rise building is investigated by computational fluid dynamics (CFD). When B/H=0.1, it is found that the wind pressure on the windward side was reduced especially on the lower part, but for different layers of surrounding buildings, there was no great difference, which agrees with our previous wind tunnel experiment data. Then we changed the aspect ratio from 0.1 to 2, to represent different airflow regimes: skimming flow (SF), and wake interference (WI). It shows that the average Cp increases when B/H increases. For different air flow regimes, it is found that insignificant difference exists when the number of the building layers is more than 2. From the engineering point of view, it is sufficient to only include the first layer for natural ventilation design by using CFD simulation or wind tunnel experiment.
Resumo:
Natural ventilation relies on less controllable natural forces so that it needs more artificial control, and thus its prediction, design and analysis become more important. This paper presents both theoretical and numerical simulations for predicting the natural ventilation flow in a two-zone building with multiple openings which is subjected to the combined natural forces. To our knowledge, this is the first analytical solutions obtained so far for a building with more than one zones and in each zone with possibly more than 2 openings. The analytical solution offers a possibility for validating a multi-zone airflow program. A computer program MIX is employed to conduct the numerical simulation. Good agreement is achieved. Different airflow modes are identified and some design recommendations are also provided.
Resumo:
An automated cloud band identification procedure is developed that captures the meteorology of such events over southern Africa. This “metbot” is built upon a connected component labelling method that enables blob detection in various atmospheric fields. Outgoing longwave radiation is used to flag candidate cloud band days by thresholding the data and requiring detected blobs to have sufficient latitudinal extent and exhibit positive tilt. The Laplacian operator is used on gridded reanalysis variables to highlight other features of meteorological interest. The ability of this methodology to capture the significant meteorology and rainfall of these synoptic systems is tested in a case study. Usefulness of the metbot in understanding event to event similarities of meteorological features is demonstrated, highlighting features previous studies have noted as key ingredients to cloud band development in the region. Moreover, this allows the presentation of a composite cloud band life cycle for southern Africa events. The potential of metbot to study multiscale interactions is discussed, emphasising its key strength: the ability to retain details of extreme and infrequent events. It automatically builds a database that is ideal for research questions focused on the influence of intraseasonal to interannual variability processes on synoptic events. Application of the method to convergence zone studies and atmospheric river descriptions is suggested. In conclusion, a relation-building metbot can retain details that are often lost with object-based methods but are crucial in case studies. Capturing and summarising these details may be necessary to develop deeper process-level understanding of multiscale interactions.
Resumo:
In 'Avalanche', an object is lowered, players staying in contact throughout. Normally the task is easily accomplished. However, with larger groups counter-intuitive behaviours appear. The paper proposes a formal theory for the underlying causal mechanisms. The aim is to not only provide an explicit, testable hypothesis for the source of the observed modes of behaviour-but also to exemplify the contribution that formal theory building can make to understanding complex social phenomena. Mapping reveals the importance of geometry to the Avalanche game; each player has a pair of balancing loops, one involved in lowering the object, the other ensuring contact. For more players, sets of balancing loops interact and these can allow dominance by reinforcing loops, causing the system to chase upwards towards an ever-increasing goal. However, a series of other effects concerning human physiology and behaviour (HPB) is posited as playing a role. The hypothesis is therefore rigorously tested using simulation. For simplicity a 'One Degree of Freedom' case is examined, allowing all of the effects to be included whilst rendering the analysis more transparent. Formulation and experimentation with the model gives insight into the behaviours. Multi-dimensional rate/level analysis indicates that there is only a narrow region in which the system is able to move downwards. Model runs reproduce the single 'desired' mode of behaviour and all three of the observed 'problematic' ones. Sensitivity analysis gives further insight into the system's modes and their causes. Behaviour is seen to arise only when the geometric effects apply (number of players greater than degrees of freedom of object) in combination with a range of HPB effects. An analogy exists between the co-operative behaviour required here and various examples: conflicting strategic objectives in organizations; Prisoners' Dilemma and integrated bargaining situations. Additionally, the game may be relatable in more direct algebraic terms to situations involving companies in which the resulting behaviours are mediated by market regulations. Finally, comment is offered on the inadequacy of some forms of theory building and the case is made for formal theory building involving the use of models, analysis and plausible explanations to create deep understanding of social phenomena.
Resumo:
The article discusses various reports published within the issue, including the articles "Closing the Loop: Promoting Synergies with other Theory Building Approaches to Improve System Dynamics Practice," by Birgit Kopainsky and Luis Luna-Reyes, and "On improving dynamic decision-making: Implications from multiple-process cognitive theory," by Bent Bakken.
Resumo:
There is growing pressure on the construction industry to deliver energy efficient, sustainable buildings but there is evidence to suggest that, in practice, designs regularly fail to achieve the anticipated levels of in-use energy consumption. One of the key factors behind this discrepancy is the behavior of the building occupants. This paper explores how insights from experimental psychology could potentially be used to reduce the gap between the predicted and actual energy performance of buildings. It demonstrates why traditional methods to engage with the occupants are not always successful and proposes a model for a more holistic approach to this issue. The paper concludes that achieving energy efficiency in buildings is not solely a technological issue and that the construction industry needs to adopt a more user-centred approach.
Resumo:
Design summer years representing near-extreme hot summers have been used in the United Kingdom for the evaluation of thermal comfort and overheating risk. The years have been selected from measured weather data basically representative of an assumed stationary climate. Recent developments have made available ‘morphed’ equivalents of these years by shifting and stretching the measured variables using change factors produced by the UKCIP02 climate projections. The release of the latest, probabilistic, climate projections of UKCP09 together with the availability of a weather generator that can produce plausible daily or hourly sequences of weather variables has opened up the opportunity for generating new design summer years which can be used in risk-based decision-making. There are many possible methods for the production of design summer years from UKCP09 output: in this article, the original concept of the design summer year is largely retained, but a number of alternative methodologies for generating the years are explored. An alternative, more robust measure of warmth (weighted cooling degree hours) is also employed. It is demonstrated that the UKCP09 weather generator is capable of producing years for the baseline period, which are comparable with those in current use. Four methodologies for the generation of future years are described, and their output related to the future (deterministic) years that are currently available. It is concluded that, in general, years produced from the UKCP09 projections are warmer than those generated previously. Practical applications: The methodologies described in this article will facilitate designers who have access to the output of the UKCP09 weather generator (WG) to generate Design Summer Year hourly files tailored to their needs. The files produced will differ according to the methodology selected, in addition to location, emissions scenario and timeslice.
Resumo:
The Chartered Institute of Building Service Engineers (CIBSE) produced a technical memorandum (TM36) presenting research on future climate impacting building energy use and thermal comfort. One climate projection for each of four CO2 emissions scenario were used in TM36, so providing a deterministic outlook. As part of the UK Climate Impacts Programme (UKCIP) probabilistic climate projections are being studied in relation to building energy simulation techniques. Including uncertainty in climate projections is considered an important advance to climate impacts modelling and is included in the latest UKCIP data (UKCP09). Incorporating the stochastic nature of these new climate projections in building energy modelling requires a significant increase in data handling and careful statistical interpretation of the results to provide meaningful conclusions. This paper compares the results from building energy simulations when applying deterministic and probabilistic climate data. This is based on two case study buildings: (i) a mixed-mode office building with exposed thermal mass and (ii) a mechanically ventilated, light-weight office building. Building (i) represents an energy efficient building design that provides passive and active measures to maintain thermal comfort. Building (ii) relies entirely on mechanical means for heating and cooling, with its light-weight construction raising concern over increased cooling loads in a warmer climate. Devising an effective probabilistic approach highlighted greater uncertainty in predicting building performance, depending on the type of building modelled and the performance factors under consideration. Results indicate that the range of calculated quantities depends not only on the building type but is strongly dependent on the performance parameters that are of interest. Uncertainty is likely to be particularly marked with regard to thermal comfort in naturally ventilated buildings.
Resumo:
Novel bis(azidophenyl)phosphole sulfide building block 8 has been developed to give access to a plethora of phosphole-containing π-conjugated systems in a simple synthetic step. This was explored for the reaction of the two azido moieties with phenyl-, pyridyl- and thienylacetylenes, to give bis(aryltriazolyl)-extended π-systems, having either the phosphole sulfide (9) or the phosphole (10) group as central ring. These conjugated frameworks exhibit intriguing photophysical and electrochemical properties that vary with the nature of the aromatic end-group. The λ3-phospholes 10 display blue fluorescence (λem = 460–469 nm) with high quan-tum yield (ΦF = 0.134–0.309). The radical anion of pyridylsubstituted phosphole sulfide 9b was observed with UV/Vis spectroscopy. TDDFT calculations on the extended π-systems showed some variation in the shape of the HOMOs, which was found to have an effect on the extent of charge transfer, depending on the aromatic end-group. Some fine-tuning of the emission maxima was observed, albeit subtle, showing a decrease in conjugation in the order thienyl � phenyl � pyridyl. These results show that variations in the distal ends of such π-systems have a subtle but significant effect on photophysical properties.
Resumo:
There is potential to reduce both operational and embodied greenhouse gas emission from buildings. To date the focus has been on reducing the operational element, although given the urgency of carbon reductions, it may be more beneficial to consider upfront embodied carbon reductions. This paper describes a case study on the whole life carbon cycle of a warehouse building in Swindon, UK. It examines the relationship between embodied carbon (Ec) and operational carbon (Oc), the proportions of Ec from the structural and non-structural elements, carbon benchmarking of the structure, the value of ‘cradle to site’ or ‘cradle to grave’ assessments and the significance of the timing of emissions during the life of the building. The case study indicates that Ec was dominant for the building and that the structure was responsible for more than half of the Ec. Weighting of future emissions appears to be an important factor to consider. The PAS 2050 reduction factors had only a modest effect but weighting to allow for future decarbonisation of the national grid energy supply had a large effect. This suggests that future operational carbon emissions are being overestimated compared to embodied.
Resumo:
The chapter examines the compex roles of corruption in state-buioding environments. The first section briefly outlines how statebuilding is conceptualized in this discussion. The second section examines the concept of corruption,and argues that the organization, rather than the scale of corruption, offers a better lens through which its impact can be analyzed. The third section examines the complex relationship between corruption and statebuilding through the lenses of two key aspects of statebuilding – elite settlements, and the provision of public services – and briefly discusses both the complex relationship between corruption and security, and the impact of aid on corruption in statebuilding environments. The fourth section concludes the chapter with a reflection on the implications of the analysis for understanding contemporary statebuilding efforts and policy.
Resumo:
The chapter examines the impact of international statbuilding efforts on political and economic dynamics in Kosovo from 1999 to 2011