846 resultados para Bit error rate
Resumo:
Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.
Resumo:
Effects of considering the comminution rate -kc- and the correction of microbial contamination -using 15N techniques- of particles in the rumen on estimates of ruminally undegraded fractions and their intestinal digestibility were examined generating composite samples -from rumen-incubated residues- representative of the undegraded feed rumen outflow. The study used sunflower meal -SFM- and Italian ryegrass hay -RGH- and three rumen and duodenum cannulated wethers fed with a 40:60 RGH to concentrate diet -75 g DM/kgBW0.75-. Transit studies up to the duodenum with Yb-SFM and Eu-RGH marked samples showed higher kc values -/h- in SFM than in RGH -0.577 vs. 0.0892, p = 0.034-, whereas similar values occurred for the rumen passage rate -kp-. Estimates of ruminally undegraded and intestinal digestibility of all tested fractions decreased when kc was considered and also applying microbial correction. Thus, microbial uncorrected kp-based proportions of intestinal digested undegraded crude protein overestimated those corrected and kc-kp-based by 39% in SFM -0.146 vs. 0.105- and 761% in RGH -0.373 vs. 0.0433-. Results show that both kc and microbial contamination correction should be considered to obtain accurate in situ estimates in grasses, whereas in protein concentrates not considering kc is an important source of error.
Resumo:
Direct optical modulation at 2.5 Gb/s with amplitude of more than 0.5 W has been demonstrated in single longitudinal mode distributed Bragg reflector tapered lasers emitting at 1060 nm with separated injection of the ridge waveguide and tapered sections. The modulating signal of ~110 mA peak to peak was applied to the ridge waveguide section, yielding a high modulation efficiency of ~5 W/A. The large-signal frequency response of the experimental set-up was limited by the bandwidth of the electrical amplifier rather than by the internal dynamics of the laser, indicating that higher bit rates could be achieved with improved driving electronics.
Resumo:
En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.
Resumo:
The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (~0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.
Resumo:
LHE (logarithmical hopping encoding) is a computationally efficient image compression algorithm that exploits the Weber–Fechner law to encode the error between colour component predictions and the actual value of such components. More concretely, for each pixel, luminance and chrominance predictions are calculated as a function of the surrounding pixels and then the error between the predictions and the actual values are logarithmically quantised. The main advantage of LHE is that although it is capable of achieving a low-bit rate encoding with high quality results in terms of peak signal-to-noise ratio (PSNR) and image quality metrics with full-reference (FSIM) and non-reference (blind/referenceless image spatial quality evaluator), its time complexity is O( n) and its memory complexity is O(1). Furthermore, an enhanced version of the algorithm is proposed, where the output codes provided by the logarithmical quantiser are used in a pre-processing stage to estimate the perceptual relevance of the image blocks. This allows the algorithm to downsample the blocks with low perceptual relevance, thus improving the compression rate. The performance of LHE is especially remarkable when the bit per pixel rate is low, showing much better quality, in terms of PSNR and FSIM, than JPEG and slightly lower quality than JPEG-2000 but being more computationally efficient.
Resumo:
This paper presents a new methodology for measurement of the instantaneous average exhaust mass flow rate in reciprocating internal combustion engines to be used to determinate real driving emissions on light duty vehicles, as part of a Portable Emission Measurement System (PEMS). Firstly a flow meter, named MIVECO flow meter, was designed based on a Pitot tube adapted to exhaust gases which are characterized by moisture and particle content, rapid changes in flow rate and chemical composition, pulsating and reverse flow at very low engine speed. Then, an off-line methodology was developed to calculate the instantaneous average flow, considering the ?square root error? phenomenon. The paper includes the theoretical fundamentals, the developed flow meter specifications, the calibration tests, the description of the proposed off-line methodology and the results of the validation test carried out in a chassis dynamometer, where the validity of the mass flow meter and the methodology developed are demonstrated.
Resumo:
The mutagenic effect of low linear energy transfer ionizing radiation is reduced for a given dose as the dose rate (DR) is reduced to a low level, a phenomenon known as the direct DR effect. Our reanalysis of published data shows that for both somatic and germ-line mutations there is an opposite, inverse DR effect, with reduction from low to very low DR, the overall dependence of induced mutations being parabolically related to DR, with a minimum in the range of 0.1 to 1.0 cGy/min (rule 1). This general pattern can be attributed to an optimal induction of error-free DNA repair in a DR region of minimal mutability (MMDR region). The diminished activation of repair at very low DRs may reflect a low ratio of induced (“signal”) to spontaneous background DNA damage (“noise”). Because two common DNA lesions, 8-oxoguanine and thymine glycol, were already known to activate repair in irradiated mammalian cells, we estimated how their rates of production are altered upon radiation exposure in the MMDR region. For these and other abundant lesions (abasic sites and single-strand breaks), the DNA damage rate increment in the MMDR region is in the range of 10% to 100% (rule 2). These estimates suggest a genetically programmed optimatization of response to radiation in the MMDR region.
Resumo:
In the analysis of heart rate variability (HRV) are used temporal series that contains the distances between successive heartbeats in order to assess autonomic regulation of the cardiovascular system. These series are obtained from the electrocardiogram (ECG) signal analysis, which can be affected by different types of artifacts leading to incorrect interpretations in the analysis of the HRV signals. Classic approach to deal with these artifacts implies the use of correction methods, some of them based on interpolation, substitution or statistical techniques. However, there are few studies that shows the accuracy and performance of these correction methods on real HRV signals. This study aims to determine the performance of some linear and non-linear correction methods on HRV signals with induced artefacts by quantification of its linear and nonlinear HRV parameters. As part of the methodology, ECG signals of rats measured using the technique of telemetry were used to generate real heart rate variability signals without any error. In these series were simulated missing points (beats) in different quantities in order to emulate a real experimental situation as accurately as possible. In order to compare recovering efficiency, deletion (DEL), linear interpolation (LI), cubic spline interpolation (CI), moving average window (MAW) and nonlinear predictive interpolation (NPI) were used as correction methods for the series with induced artifacts. The accuracy of each correction method was known through the results obtained after the measurement of the mean value of the series (AVNN), standard deviation (SDNN), root mean square error of the differences between successive heartbeats (RMSSD), Lomb\'s periodogram (LSP), Detrended Fluctuation Analysis (DFA), multiscale entropy (MSE) and symbolic dynamics (SD) on each HRV signal with and without artifacts. The results show that, at low levels of missing points the performance of all correction techniques are very similar with very close values for each HRV parameter. However, at higher levels of losses only the NPI method allows to obtain HRV parameters with low error values and low quantity of significant differences in comparison to the values calculated for the same signals without the presence of missing points.
Resumo:
We studied the global and local ℳ-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2−3 effective radii), with a resolution high enough to separate individual H II regions and/or aggregations. About 3000 individual H II regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise ratio to derive the oxygen abundance and star-formation rate associated with each region. In addition, we computed the integrated and spatially resolved stellar masses (and surface densities) based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion lower than the one already reported in the literature (σ_Δlog (O/H) = 0.07 dex). Indeed, this dispersion is only slightly higher than the typical error derived for our oxygen abundances. However, we found no secondary relation with the star-formation rate other than the one induced by the primary relation of this quantity with the stellar mass. The analysis for our sample of ~3000 individual H II regions confirms (i) a local mass-metallicity relation and (ii) the lack of a secondary relation with the star-formation rate. The same analysis was performed with similar results for the specific star-formation rate. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, such like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk-dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.
Resumo:
Climate conditions in the westernmost Mediterranean (Alboran Sea basin) over the last two millennia have been reconstructed through integration of molecular proxies applied for the first time in this region at such high resolution. Two temperature proxies, one based on isoprenoid membrane lipids of marine Thaumarchaeota (TEXH86-tetraether index of compounds consisting of 86 carbons) and the other on alkenones produced by haptophytes (UK'37 ratio) were applied to reconstruct sea surface temperature (SST). Both records reveal a progressive long term decline in SST over the last two millennia and an increased rate of warming during the second half of the twentieth century. This is in accord with previous temperature reconstructions for the Northern Hemisphere. TEXH86 temperature values are higher than those inferred from UK'37, probably due to differences in the bloom season of haptophytes and Thaumarchaeota, and reflect summer SST. The branched vs. isoprenoid tetraether index (BIT index) suggests a low contribution of soil organic matter (OM) to the sedimentary OM. The stable carbon isotopic composition of long chain n-alkanes indicates a predominant C3 plant contribution, with no major change in vegetation over the last 2000 yr. The distribution of long chain 1,14-diols (most likely sourced by Proboscia species in this setting) provided insight into variation in upwelling conditions during the last 2000 yr and depicts a correlation with the North Atlantic Oscillation (NAO) index, providing evidence of enhanced wind induced upwelling during periods of a persistent positive mode of the NAO.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F-0 immigrants in populations with ongoing gene flow, and hence for providing direct, real-time estimates of migration rates. The identification of accurate critical values required that resampling methods preserved the linkage disequilibrium deriving from recent generations of immigrants and reflected the sampling variance present in the data set being analysed. A novel Monte Carlo resampling method taking into account these aspects was proposed and its efficiency was evaluated. Power and error were relatively insensitive to the frequency assumed for missing alleles. Power to identify F-0 immigrants was improved by using large sample size (up to about 50 individuals) and by sampling all populations from which migrants may have originated. A combination of plotting genotype likelihoods and calculating mean genotype likelihood ratios (D-LR) appeared to be an effective way to predict whether F-0 immigrants could be identified for a particular pair of populations using a given set of markers.
Resumo:
Eastern curlews Numenius madagascariensis spending the nonbreeding season in eastern Australia foraged on three intertidal decapods: soldier crab Mictyris longicarpus, sentinel crab Macrophthalmus crassipes and ghost-shrimp Trypaea australiensis. Due to their ecology, these crustaceans were spatially segregated (=distributed in 'patches') and the curlews intermittently consumed more than one prey type. It was predicted that if the curlews behaved as intake rate maximizers, the time spent foraging on a particular prey (patch) would reflect relative availabilities of the prey types and thus prey-specific intake rates would be equal. During the mid-nonbreeding period (November-December), Mictyris and Macrophthalmus were primarily consumed and prey-specific intake rates were statistically indistinguishable (8.8 versus 10.1 kJ x min(-1)). Prior to migration (February), Mictyris and Trypaea were hunted and the respective intake rates were significantly different (8.9 versus 2.3 kJ x min(-1)). Time allocation to Trypaea-hunting was independent of the availability of Mictyris. Thus, consumption of Trypaea depressed the overall intake rate. Six hypotheses for consuming Trypaea before migration were examined. Five hypotheses: the possible error by the predator, prey specialization, observer overestimation of time spent hunting Trypaea, supplementary prey and the choice of higher quality prey due to a digestive bottleneck, were deemed unsatisfactory. The explanation for consumption of a low intake-rate but high quality prey (Trypaea) deemed plausible was diet optimisation by the Curlews in response to the pre-migratory modulation (decrease in size/processing capacity) of their digestive system. With a seasonal decrease in the average intake rate, the estimated intake per low tide increased from 1233 to 1508 kJ between the mid-nonbreeding and pre-migratory periods by increasing the overall time spent on the sandflats and the proportion of time spent foraging.
Resumo:
The use of presence/absence data in wildlife management and biological surveys is widespread. There is a growing interest in quantifying the sources of error associated with these data. We show that false-negative errors (failure to record a species when in fact it is present) can have a significant impact on statistical estimation of habitat models using simulated data. Then we introduce an extension of logistic modeling, the zero-inflated binomial (ZIB) model that permits the estimation of the rate of false-negative errors and the correction of estimates of the probability of occurrence for false-negative errors by using repeated. visits to the same site. Our simulations show that even relatively low rates of false negatives bias statistical estimates of habitat effects. The method with three repeated visits eliminates the bias, but estimates are relatively imprecise. Six repeated visits improve precision of estimates to levels comparable to that achieved with conventional statistics in the absence of false-negative errors In general, when error rates are less than or equal to50% greater efficiency is gained by adding more sites, whereas when error rates are >50% it is better to increase the number of repeated visits. We highlight the flexibility of the method with three case studies, clearly demonstrating the effect of false-negative errors for a range of commonly used survey methods.