889 resultados para Biogas Transfer in Estuaries
Resumo:
Following recognition of effects in the 1980s, tributyltin (TBT) has been monitored at sites in the English Channel to evaluate the prognosis for biota – spanning the introduction of restrictions on TBT use on small boats and the recent phase-out on the global fleet. We describe how persistence and impact of TBT in clams Scrobicularia plana has changed during this period in Southampton Water and Poole Harbour. TBT contamination (and loss) in water, sediment and clams reflects the abundance and type of vessel activity: half-times in sediment (up to 8y in Poole, 33y in Southampton) are longest near commercial shipping. Recovery of clam populations – slowest in TBT-contaminated deposits – provides a useful biological measure of legislative efficacy in estuaries. On rocky shores, recovery from imposex in Nucella lapillus is evident at many sites but, near ports, is prolonged by shipping impacts, including sediment legacy, for example, in the Fal.
Resumo:
A mathematical model for calculating the nonisothermal moisture transfer in building materials is presented in the article. The coupled heat and moisture transfer problem was modeled. Vapor content and temperature were chosen as principal driving potentials. The coupled equations were solved by an analytical method, which consists of applying the Laplace transform technique and the Transfer Function Method. A new experimental methodology for determining the temperature gradient coefficient for building materials was also proposed. Both the moisture diffusion coefficient and the temperature gradient coefficient for building material were experimentally evaluated. Using the measured moisture transport coefficients, the temperature and vapor content distribution inside building materials were predicted by the new model. The results were compared with experimental data. A good agreement was obtained.
Resumo:
We propose a strategy for perfect state transfer in spin chains based on the use of an unmodulated coupling Hamiltonian whose coefficients are explicitly time dependent. We show that, if specific and nondemanding conditions are satisfied by the temporal behavior of the coupling strengths, our model allows perfect state transfer. The paradigm put forward by our proposal holds the promises to set an alternative standard to the use of clever encoding and coupling-strength engineering for perfect state transfer.
Resumo:
Purpose – This paper explores the factors which determine the degree of knowledge transfer in inter-firm new product development projects. We test a theoretical model exploring how inter-firm knowledge transfer is enabled or hindered by a buyer’s learning intent, the degree of supplier protectiveness, inter-firm knowledge ambiguity, and absorptive capacity. Design/methodology/approach – A sample of 153 R&D intensive manufacturing firms in the UK automotive, aerospace, pharmaceutical, electrical, chemical, and general manufacturing industries were used to test the framework. Two-step structural equation modeling in AMOS 7.0 was used to analyse the data. Findings – Our results indicate that a buyer’s learning intent increases inter-firm knowledge transfer, but also acts as an incentive for suppliers to protect their knowledge. Such defensive measures increase the degree of inter-firm knowledge ambiguity, encouraging buyer firms to invest in absorptive capacity as a means to interpret supplier knowledge, but also increase the degree of knowledge transfer. Practical implications – Our paper illustrates the effects of focusing on acquisition, rather than accessing, supplier technological knowledge. We show that an overt learning strategy can be detrimental to knowledge transfer between buyer-supplier, as supplier’s react by restricting the flow of information. Organisations are encouraged to consider this dynamic when engaging in multi-organisational new product development projects. Originality/value – This paper examines the dynamics of knowledge transfer within inter-firm NPD projects, showing how transfer is influenced by the buyer firm’s learning intention, supplier’s response, characteristics of the relationship and knowledge to be transferred.
Resumo:
Bacterial 16S rRNA genes transduced by bacteriophages were identified and analyzed in order to estimate the extent of the bacteriophage-mediated horizontal gene transfer in the wastewater environment. For this purpose, phage and bacterial DNA was isolated from the oxidation tank of a municipal wastewater treatment plant. Phylogenetic analysis of the 16S rRNA gene sequences cloned from a phage metagenome revealed that bacteriophages transduce genetic material in several major groups of bacteria. The groups identified were as follows: Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinomycetales and Firmicutes. Analysis of the 16S rRNA gene sequences in the total bacterial DNA from the same sample revealed that several bacterial groups found in the oxidation tank were not present in the phage metagenome (e.g. Deltaproteobacteria, Nitrospira, Planctomycetes and many Actinobacteria genera). These results suggest that transduction in a wastewater environment occurs in several bacterial groups; however, not all species are equally involved into this process. The data also showed that a number of distinctive bacterial strains participate in transduction-mediated gene transfer within identified bacterial groupings. Denaturing gradient gel electrophoresis analysis confirmed that profiles of the transduced 16S rRNA gene sequences and those present in the whole microbial community show significant differences.
Resumo:
A central element in the privatization of council housing has been the development of stock transfer policy. A variety of perspectives on this process have been explored including the impact on accountability relations; however, the tenants’ experience is almost completely absent from this literature. The paper develops a case study that draws on the experience of the tenants involved in a stock transfer. In the process stock transfers, and related accountability relations, are shown to be contested with tenant-led campaigns challenging this neoliberal inspired policy. The case study illustrates the power and financial resource asymmetries in transfer campaigns with a range of anti-democratic tactics employed by those pursuing the transfer. On the basis of a critique of neoliberalism, the stock transfer process is seen as an attack on the previous democratic control of council housing, which is replaced with ‘governance by experts and elites’ and private sector inspired corporate governance forms of accountability. Thus the paper seeks to answer two questions; how democratic is the transfer process and what are the long-term implications for democratic accountability in the social housing sector.
Resumo:
One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non-uniform inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non-uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.
Resumo:
Unsteady heat transfer in a turbine blade film cooling flow is studied using detached eddy simulation (DES). Detailed computation of a single row of 35 degree round holes on a flat plate has been obtained for a blowing ratio of 1.0 and a density ratio of 2.0. The instantaneous flow fields and heat transfer distributions are found to be highly unsteady and oscillatory in nature. The fluctuation of the adiabatic effectiveness and heat transfer coefficient, for example, can be as high as 15 and 50 percent of the time-averaged value, respectively. The correlation between the coherent vortical structures and the unsteady heat transfer is carefully examined. It is shown that the fluctuations in the adiabatic effectiveness and heat transfer coefficient are mainly caused by the spanwise fluctuation of the coolant jet and the thermal turbulent boundary layer accompanying the unsteady flow structures.
Resumo:
As Susan Bassnett and Harish Trivedi argue, ‘translation does not happen in a vacuum, but in a continuum; it is not an isolated act, it is part of an ongoing process of intercultural transfer’. In understanding Brendan Behan's most celebrated and controversial translation, of his spare Irish language play An Giall (1958) to its riotous English counterpart The Hostage (1958), understanding the problematic ‘intercultural transfer’ between British and Irish life in the 1950s is crucial. Comparisons between both works reveal significant changes that illuminate Behan's relationship with both nations and provide a sometimes oblique metacommentary regarding his most pressing political and personal anxieties. Yet for all their differences, the plays also share a common desire to transcend the divisions forged by the colonial experience through critical understandings of life on either side of the Irish Sea. In this essay, I argue that Behan's act of transculturation reveals a great deal more reflexivity and depth than many of his critics would allow, developing an iconoclastic dialogue between British and Irish mid-century life.
Resumo:
As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis.
Resumo:
Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.
Resumo:
OBJECTIVE: To study the visual acuity and astigmatism of persons undergoing cataract extraction by local surgeons in rural China. METHODS: Visual acuity, keratometry, and refraction were measured 10 to 14 months postoperatively for all cataract cases during 4 months in Sanrao, China. RESULTS: Among 313 eligible subjects, 242 (77%) could be contacted, of whom 176 (73%) were examined. Of those who were examined, mean +/- SD age was 69.3 +/- 10.5 years, 66.5% were female, 35 had been operated on bilaterally at Sanrao, and 85.2% had a preoperative presenting visual acuity of 6/60 or worse. Presenting and best-corrected postoperative acuity in the eye that was operated on were 6/18 or better in 83.4% and 95.7%, respectively. Among 27 fellow eyes operated on elsewhere, 40.7% had a presenting acuity of 6/18 or better and 40.7% were blind (P < .001). Mean +/- SD postoperative astigmatism did not differ between 211 eyes that were operated on (-1.13 +/- 0.84 diopters) and 109 eyes that were not (-1.13 +/- 1.17 diopters; P = .27). Presence of operative complications (8.5%) and older age were associated with worse vision; bilateral surgery was associated with better vision. CONCLUSIONS: These results confirm the effectiveness of skill transfer in this setting, with superior outcomes to most studies in rural Asia and to eyes in this cohort operated on at other facilities.
Resumo:
Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must befounded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromosphericmagnetoseismology.
Spatial and temporal assessment of sediment contamination in Sado estuary: a methodological approach
Resumo:
For better management of estuarine ecosystems their contamination assessment should be easily communicated to local managers and decision makers. The problem is the lack of available data and the search of methodologies to enable that assessment using only few data. The Sado estuary in Portugal is as good example of a site where human pressures and ecological values collide with each other and where the degree of metal and organic contamination has not been subject to an overall assessment, either in terms of spatial or temporal variability, in a way that managers can understand.