972 resultados para Bellingshausen Sea, western flank of trough, middle shelf
Resumo:
In order to reconstruct Late Quatemary variations of surface oceanography in the eastequatorial South Atlantic, time series of sea-surface temperatures (SST) and paleoproductivity were established from cores recovered in the Guinea and Angola Basins, and at the Walvis Ridge. These records, based on sedimentary alkenone and organic carbon concentrations, reveal that during the last 350,000 years surface circulation and productivity changes in the east-equatorial South Atlantic were highiy sensitive to climate forcing at 23- and 100-kyr periodicities. Covarying SST and paleoproductivity changes at the equator and at the Walvis Ridge appear to be driven by variations in zonal trade-wind intensity, which forces intensification or reduction of coastal and equatorial upwelling, as well as enhanced Benguela cold water advection from the South. Phase relationships of precessional variations in the paleoproductivity and SST records from the distinct sites were evaluated with respect to boreal summer insolation over Africa, movements of southem ocean thermal fronts, and changes in global ice volume. The 23-kyr phasing implies a sensitivity of eastem South Atlantic surface water advection and upwelling to West African monsoon intensity and to changes in the position ofthe subtropical high pressure cell over the South Atlantic, both phenomena which modulate zonal strength of southeasterly trades. SST and productivity changes north of 20°S lack significant variance at the 41-kyr periodicity; and at the Walvis Ridge and the equator lead changes in ice volume. This may indicate that obliquity-driven clirnate change, characteristic for northem high latitudes, e.g fluctuations in continental ice masses, did not substantially influence subtropical and tropical surface circulation in the South Atlantic. At the 23-kyr cycle SST and productivity changes in the eastern Angola Basin lag those in the equatorial Atlantic and at the Walvis Ridge by about 3500 years. This lag is explained by variations in cross-equatorial surface water transport and west-east countercurrent retum flow modifying precessional variations of SST and productivity in the eastem Angola Basin relative to those in the mid South Atlantic area under the central field of zonal trade winds. Sea level-related shifts of upwelling cells in phase with global clirnate change may be also recorded in SST and productivity variability along the continental margin off Southwest Africa. They may account for the delay of the paleoceanogreaphic signal from continental margin sites with respect to that from the pelagic sites at the equator and the Walvis Ridge.
Resumo:
Marine endosymbiotic heterocystous cyanobacteria make unique heterocyst glycolipids (HGs) containing pentose (C5) moieties. Functionally similar HGs with hexose (C6) moieties found in free-living cyanobacteria occur in the sedimentary record, but C5 HGs have not been documented in the natural environment. Here we developed a high performance liquid chromatography multiple reaction monitoring (MRM) mass spectrometry (HPLC-MS2) method specific for trace analysis of long chain C5HGs and applied it to cultures of Rhizosolenia clevei Ostenfeld and its symbiont Richelia intracellularis which were found to contain C5 HGs and no C6 HGs. The method was then applied to suspended particulate matter (SPM) and surface sediment from the Amazon plume region known to harbor marine diatoms carrying heterocystous cyanobacteria as endosymbionts. C5 HGs were detected in both marine SPM and surface sediments, but not in SPM or surface sediment from freshwater settings in the Amazon basin. Rather, the latter contained C6 HGs, established biomarkers for free-living heterocystous cyanobacteria. Our results indicate that the C5 HGs may be potential biomarkers for marine endosymbiotic heterocystous cyanobacteria.
Resumo:
Major element, trace element, and radiogenic isotope compositions of samples collected from Ocean Drilling Program Leg 126 in the Izu-Bonin forearc basin are presented. Lavas from the center of the basin (Site 793) are high-MgO, low-Ti, two-pyroxene basaltic andesites, and represent the products of synrift volcanism in the forearc region. These synrift lavas share many of the geochemical and petrographic characteristics of boninites. In terms of their element abundances, ratios, and isotope systematics they are intermediate between low-Ti arc tholeiites from the active arc and boninites of the outer-arc high. These features suggest a systematic geochemical gradation between volcanics related to trench distance and a variably depleted source. A basement high drilled on the western flank of the basin (Site 792) comprises a series of plagioclase-rich two-pyroxene andesites with calc-alkaline affinities. These lavas are similar to calc-alkaline volcanics from Japan, but have lower contents of Ti, Zr, and low-field-strength elements (LFSE). Lavas from Site 793 show inter-element variations between Zr, Ti, Sr, Ni, and Cr that are consistent with those predicted during crystallization and melting processes. In comparison, concentrations of P, Y, LFSE, and the rare-earth elements (REE) are anomalous. These elements have been redistributed within the lava pile, concentrating particularly in sections of massive and pillowed flows. Relative movement of these two-element groupings can be related to the alteration of interstitial basaltic andesite glass to a clay mineral assemblage by a post-eruptive process. Fluid-rock interaction has produced similar effects in the basement lavas of Site 792. In this sequence, andesites and dacites have undergone a volume change related to silica mobility. As a result of this process, some lithologies have the major element characteristics of basaltic andesite and rhyolite, but can be related to andesitic or dacitic precursors by silica removal or addition.
Resumo:
Ten sites were drilled in the eastern flank of the Juan de Fuca Ridge (North East Pacific) along a 100 km-long east-west transect during Leg ODP 168. This study focuses on the mineralogical and chemical study of sediments that overly basaltic basement through which seawater circulates. Silicate authigenesis was observed in the sediment layer just above basement at sites located more than 30 km from the ridge axis. This sediment alteration is particularly abundant at ODP Sites 1031 and 1029 where authigenic formation of Fe-Mg rich smectite and zeolite and the dissolution of biogenic calcite are observed. Comparison of the distribution of the alteration in the basal sediment collected along this transect suggests that diffusional transport of aqueous solutes from the basement into the overlying sediment cannot produce the mineralogical and chemical changes in the basal sediments at Sites 1031 located on a basement topographic high, and at Site 1029 located at about 50 km from the ridge axis on a buried basement area. Vertical advection of basement fluid though the sediment section is required to produce this alteration. These processes are still active at Site 1031, based on systematic variations in pore-water profiles and temperatures obtained from stable isotopic data on calcium carbonates and the nature of authigenic minerals. At Site 1029, there is no present-day advection of basement fluids though the sediment section, suggesting that this is a relic site for fluid flow.
Resumo:
All holes drilled during Leg 114 contained ice-rafted debris. Analysis of samples from Hole 699A, Site 701, and Hole 704A yielded a nearly complete history of ice-rafting episodes. The first influx of ice-rafted debris at Site 699, on the northeastern slope of the Northeast Georgia Rise, occurred at a depth of 69.94 m below seafloor (mbsf) in sediments of early Miocene age (23.54 Ma). This material is of the same type as later ice-rafted debris, but represents only a small percentage of the coarse fraction. Significant ice-rafting episodes occurred during Chron 5. Minor amounts of ice-rafted debris first reached Site 701, on the western flank of the Mid-Atlantic Ridge (8.78 Ma at 200.92 mbsf), and more arrived in the late Miocene (5.88 Ma). The first significant quantity of sand and gravel appeared at a depth of 107.76 mbsf (4.42 Ma). Site 704, on the southern part of the Meteor Rise, received very little or no ice-rafted debris prior to 2.46 Ma. At this time, however, the greatest influx of ice-rafted debris occurred at this site. This time of maximum ice rafting correlates reasonably well with influxes of ice-rafted debris at Sites 701 (2.24 Ma) and 699 (2.38 Ma), in consideration of sample spacing at these two sites. These peaks of ice rafting may be Sirius till equivalents, if the proposed Pliocene age of Sirius tills can be confirmed. After about 1.67 Ma, the apparent mass-accumulation rate of the sediments at Site 704 declined, but with major fluctuations. This decline may be the result of a decrease in the rate of delivery of detritus from Antarctica due to reduced erosive power of the glaciers or a northward shift in the Polar Front Zone, a change in the path taken by the icebergs, or any combination of these factors.