940 resultados para Bayesian belief networks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mass media and emergency services organisations routinely gather information and disseminate it to the public. During disaster situations both the media and emergency services require acute situational awareness. New social media technologies offer opportunities to enhance situational awareness by crowd-sourcing information using real and virtual social networks. This paper documents how real and virtual social networks were used by a reporter and by members of the public to gather and disseminate emergency information during the flash flood disaster in Toowoomba and the Lockyer Valley in January 2011 and in the days and weeks after the disaster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical road infrastructure (such as tunnels and overpasses) is of major significance to society and constitutes major components of interdependent, ‘systems and networks’. Failure in critical components of these wide area infrastructure systems can often result in cascading disturbances with secondary and tertiary impacts - some of which may become initiating sources of failure in their own right, triggering further systems failures across wider networks. Perrow1) considered the impact of our increasing use of technology in high-risk fields, analysing the implications on everyday life and argued that designers of these types of infrastructure systems cannot predict every possible failure scenario nor create perfect contingency plans for operators. Challenges exist for transport system operators in the conceptualisation and implementation of response and subsequent recovery planning for significant events. Disturbances can vary from reduced traffic flow causing traffic congestion throughout the local road network(s) and subsequent possible loss of income to businesses and industry to a major incident causing loss of life or complete loss of an asset. Many organisations and institutions, despite increasing recognition of the effects of crisis events, are not adequately prepared to manage crises2). It is argued that operators of land transport infrastructure are in a similar category of readiness given the recent instances of failures in road tunnels. These unexpected infrastructure failures, and their ultimately identified causes, suggest there is significant room for improvement. As a result, risk profiles for road transport systems are often complex due to the human behaviours and the inter-mix of technical and organisational components and the managerial coverage needed for the socio-technical components and the physical infrastructure. In this sense, the span of managerial oversight may require new approaches to asset management that combines the notion of risk and continuity management. This paper examines challenges in the planning of response and recovery practices of owner/operators of transport systems (above and below ground) in Australia covering: • Ageing or established infrastructure; and • New-build infrastructure. With reference to relevant international contexts this paper seeks to suggest options for enhancing the planning and practice for crisis response in these transport networks and as a result support the resilience of Critical Infrastructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN) modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis improves the process of recommending people to people in social networks using new clustering algorithms and ranking methods. The proposed system and methods are evaluated on the data collected from a real life social network. The empirical analysis of this research confirms that the proposed system and methods achieved improvements in the accuracy and efficiency of matching and recommending people, and overcome some of the problems that social matching systems usually suffer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information that is elicited from experts can be treated as `data', so can be analysed using a Bayesian statistical model, to formulate a prior model. Typically methods for encoding a single expert's knowledge have been parametric, constrained by the extent of an expert's knowledge and energy regarding a target parameter. Interestingly these methods have often been deterministic, in that all elicited information is treated at `face value', without error. Here we sought a parametric and statistical approach for encoding assessments from multiple experts. Our recent work proposed and demonstrated the use of a flexible hierarchical model for this purpose. In contrast to previous mathematical approaches like linear or geometric pooling, our new approach accounts for several sources of variation: elicitation error, encoding error and expert diversity. Of interest are the practical, mathematical and philosophical interpretations of this form of hierarchical pooling (which is both statistical and parametric), and how it fits within the subjective Bayesian paradigm. Case studies from a bioassay and project management (on PhDs) are used to illustrate the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a distributed control approach to coordinate multiple energy storage units (ESUs) to avoid violation of voltage and thermal constraints, which are some of the main power quality challenges for future distribution networks. ESUs usually are connected to a network through voltage source converters. In this paper, both ESU converters active and reactive power are used to deal with the above mentioned power quality issues. ESUs' reactive power is proposed to be used for voltage support, while the active power is to be utilized in managing network loading. Two typical distribution networks are used to apply the proposed method, and the simulated results are illustrated in this paper to show the effectiveness of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a good solution to the shortage and environmental unfriendliness of fossil fuels, plug-in electric vehicles (PEVs) attract much interests of the public. To investigate the problems caused by the integration of numerous PEVs, a lot of research work has been done on the grid impacts of PEVs in aspects including thermal loading, voltage regulation, transformer loss of life, unbalance, losses, and harmonic distortion levels. This paper surveys the-state-of-the-art of the research in this area and outline three possible measures for a power grid company to make full use of PEVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a semi-supervised approach of anomaly detection in Online Social Networks. The social network is modeled as a graph and its features are extracted to detect anomaly. A clustering algorithm is then used to group users based on these features and fuzzy logic is applied to assign degree of anomalous behavior to the users of these clusters. Empirical analysis shows effectiveness of this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated critical belief-based targets for promoting the introduction of solid foods to infants at six months. First-time mothers (N = 375) completed a Theory of Planned Behaviour belief-based questionnaire and follow-up questionnaire assessing the age the infant was first introduced to solids. Normative beliefs about partner/spouse (β = 0.16) and doctor (β = 0.22), and control beliefs about commercial baby foods available for infants before six months (β = −0.20), predicted introduction of solids at six months. Intervention programs should target these critical beliefs to promote mothers’ adherence to current infant feeding guidelines to introduce solids at around six months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keeping exotic plant pests out of our country relies on good border control or quarantine. However with increasing globalization and mobilization some things slip through. Then the back up systems become important. This can include an expensive form of surveillance that purposively targets particular pests. A much wider net is provided by general surveillance, which is assimilated into everyday activities, like farmers checking the health of their crops. In fact farmers and even home gardeners have provided a front line warning system for some pests (eg European wasp) that could otherwise have wreaked havoc. Mathematics is used to model how surveillance works in various situations. Within this virtual world we can play with various surveillance and management strategies to "see" how they would work, or how to make them work better. One of our greatest challenges is estimating some of the input parameters : because the pest hasn't been here before, it's hard to predict how well it might behave: establishing, spreading, and what types of symptoms it might express. So we rely on experts to help us with this. This talk will look at the mathematical, psychological and logical challenges of helping experts to quantify what they think. We show how the subjective Bayesian approach is useful for capturing expert uncertainty, ultimately providing a more complete picture of what they think... And what they don't!

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis developed and applied Bayesian models for the analysis of survival data. The gene expression was considered as explanatory variables within the Bayesian survival model which can be considered the new contribution in the analysis of such data. The censoring factor that is inherent of survival data has also been addressed in terms of its impact on the fitting of a finite mixture of Weibull distribution with and without covariates. To investigate this, simulation study were carried out under several censoring percentages. Censoring percentage as high as 80% is acceptable here as the work involved high dimensional data. Lastly the Bayesian model averaging approach was developed to incorporate model uncertainty in the prediction of survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil-based emissions of nitrous oxide (N2O), a well-known greenhouse gas, have been associated with changes in soil water-filled pore space (WFPS) and soil temperature in many previous studies. However, it is acknowledged that the environment-N2O relationship is complex and still relatively poorly unknown. In this article, we employed a Bayesian model selection approach (Reversible jump Markov chain Monte Carlo) to develop a data-informed model of the relationship between daily N2O emissions and daily WFPS and soil temperature measurements between March 2007 and February 2009 from a soil under pasture in Queensland, Australia, taking seasonal factors and time-lagged effects into account. The model indicates a very strong relationship between a hybrid seasonal structure and daily N2O emission, with the latter substantially increased in summer. Given the other variables in the model, daily soil WFPS, lagged by a week, had a negative influence on daily N2O; there was evidence of a nonlinear positive relationship between daily soil WFPS and daily N2O emission; and daily soil temperature tended to have a linear positive relationship with daily N2O emission when daily soil temperature was above a threshold of approximately 19°C. We suggest that this flexible Bayesian modeling approach could facilitate greater understanding of the shape of the covariate-N2O flux relation and detection of effect thresholds in the natural temporal variation of environmental variables on N2O emission.