930 resultados para BIASES
Resumo:
OBJECTIVES To report a 10-year single center experience with Amplatzer devices for left atrial appendage (LAA) occlusion. BACKGROUND Intermediate-term outcome data following LAA occlusion are scarce. METHODS Short- and intermediate-term outcomes of patients who underwent LAA occlusion were assessed. All procedures were performed under local aesthesia without transesophageal echocardiography. Patients were discharged on acetylsalicylic acid and clopidogrel for 1-6 months. RESULTS LAA occlusion was attempted in 152 patients (105 males, age 72 ± 10 years, CHA2 DS2 -Vasc-score 3.4 ± 1.7, HAS-BLED-score 2.4 ± 1.2). Nondedicated devices were used in 32 patients (21%, ND group) and dedicated Amplatzer Cardiac Plugs were used in 120 patients (79%, ACP group). A patent foramen ovale or atrial septal defect was used for left atrial access and closed at the end of LAA occlusion in 40 patients. The short-term safety endpoints (procedural complications, bleeds) occurred in 15 (9.8%) and the efficacy endpoints (death, stroke, systemic embolization) in 0 patients. Device embolization occurred more frequently in the ND as compared to the ACP group (5 patients or 12% vs. 2 patients or 2%). Mean intermediate-term follow up of the study population was 32 months (range 1-120). Late deaths occurred in 15 patients (5 cardiovascular, 7 noncardiac, 3 unexplained). Neurologic events occurred in 2, peripheral embolism in 1, and major bleeding in 4 patients. The composite efficacy and safety endpoint occurred in 7% and 12% of patients. CONCLUSION LAA closure may be a good alternative to oral anticoagulation. This hypothesis needs to be tested in a randomized clinical trial to ensure that all potential biases of this observational study are accounted for.
Resumo:
Sport psychology has shown an increasing development in the past 25 years. A first focus is laid on the growth of research output as indicated by the number of publications. A more detailed analysis shows that some mainstream topics are very dominant in the international research literature whereas other themes are completely lacking. Possible biases are discussed as well as consequences for the body of knowledge in sport psychology. The need for a sound training in sport psychology is discussed in relation with the progress in sport psychology research. Different concepts of education in sport psychology with their respective background are compared and their impact on the development of sport psychology is discussed. The field of application, mainly in top level sport, is presented with a focus on professional standards and deontological codes. Conclusions are drawn with the aim to open new perspectives for research, education, and application of sport psychology.
Resumo:
This study investigates predictors of outcome in a secondary analysis of dropout and completer data from a randomized controlled effectiveness trial comparing CBTp to a wait-list group (Lincoln et al., 2012). Eighty patients with DSM-IV psychotic disorders seeking outpatient treatment were included. Predictors were assessed at baseline. Symptom outcome was assessed at post-treatment and at one-year follow-up. The predictor x group interactions indicate that a longer duration of disorder predicted less improvement in negative symptoms in the CBTp but not in the wait-list group whereas jumping-to-conclusions was associated with poorer outcome only in the wait-list group. There were no CBTp specific predictors of improvement in positive symptoms. However, in the combined sample (immediate CBTp+the delayed CBTp group) baseline variables predicted significant amounts of positive and negative symptom variance at post-therapy and one-year follow-up after controlling for pre-treatment symptoms. Lack of insight and low social functioning were the main predictors of drop-out, contributing to a prediction accuracy of 87%. The findings indicate that higher baseline symptom severity, poorer functioning, neurocognitive deficits, reasoning biases and comorbidity pose no barrier to improvement during CBTp. However, in line with previous predictor-research, the findings imply that patients need to receive treatment earlier.
Resumo:
Clinical observations suggest abnormal gaze perception to be an important indicator of social anxiety disorder (SAD). Experimental research has yet paid relatively little attention to the study of gaze perception in SAD. In this article we first discuss gaze perception in healthy human beings before reviewing self-referential and threat-related biases of gaze perception in clinical and non-clinical socially anxious samples. Relative to controls, socially anxious individuals exhibit an enhanced self-directed perception of gaze directions and demonstrate a pronounced fear of direct eye contact, though findings are less consistent regarding the avoidance of mutual gaze in SAD. Prospects for future research and clinical implications are discussed.
Resumo:
Both inter- and intrasexual selection have been implicated in the origin and maintenance of species-rich taxa with diverse sexual traits. Simultaneous disruptive selection by female mate choice and male-male competition can, in theory, lead to speciation without geographical isolation if both act on the same male trait. Female mate choice can generate discontinuities in gene flow, while male-male competition can generate negative frequency-dependent selection stabilizing the male trait polymorphism. Speciation may be facilitated when mating preference and/or aggression bias are physically linked to the trait they operate on. We tested for genetic associations among female mating preference, male aggression bias and male coloration in the Lake Victoria cichlid Pundamilia. We crossed females from a phenotypically variable population with males from both extreme ends of the phenotype distribution in the same population (blue or red). Male offspring of a red sire were significantly redder than males of a blue sire, indicating that intra-population variation in male coloration is heritable. We tested mating preferences of female offspring and aggression biases of male offspring using binary choice tests. There was no evidence for associations at the family level between female mating preferences and coloration of sires, but dam identity had a significant effect on female mate preference. Sons of the red sire directed significantly more aggression to red than blue males, whereas sons of the blue sire did not show any bias. There was a positive correlation among individuals between male aggression bias and body coloration, possibly due to pleiotropy or physical linkage, which could facilitate the maintenance of color polymorphism.
Resumo:
Narcissists’ perception of others is marked by a negative bias in the service of their own self-enhancement. The aim of this study was to determine whether narcissists’ negative bias extends to the perception of romantic partners too. In addition, we explored whether partners of narcissists succumb to specific perception biases as well. During 14 days, 86 couples completed measures of support given to and received from their partners. The results indicated that both male and female narcissists were more accurate in detecting negative support (e.g., blaming the partner for his or her problems) received from their partners, while female narcissists only were less accurate in perceiving altruistic support motives (e.g., truly enjoying to help the partner) of their male partner. Moreover, narcissists as well as their partners displayed a negative bias by underestimating the amount of altruistic support motives reported by each of them. On the other hand, partners of narcissists were positively biased as well and underestimated the negative support given by the narcissists. Results are discussed in relation to the self-regulatory goals of narcissists and of their partners and with respect to the possible impact of their accuracy and biases on the couple wellbeing.
Resumo:
Upper-air observations are a fundamental data source for global atmospheric data products, but uncertainties, particularly in the early years, are not well known. Most of the early observations, which have now been digitized, are prone to a large variety of undocumented uncertainties (errors) that need to be quantified, e.g., for their assimilation in reanalysis projects. We apply a novel approach to estimate errors in upper-air temperature, geopotential height, and wind observations from the Comprehensive Historical Upper-Air Network for the time period from 1923 to 1966. We distinguish between random errors, biases, and a term that quantifies the representativity of the observations. The method is based on a comparison of neighboring observations and is hence independent of metadata, making it applicable to a wide scope of observational data sets. The estimated mean random errors for all observations within the study period are 1.5 K for air temperature, 1.3 hPa for pressure, 3.0 ms−1for wind speed, and 21.4° for wind direction. The estimates are compared to results of previous studies and analyzed with respect to their spatial and temporal variability.
Resumo:
The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well.
Resumo:
We present results from an intercomparison program of CO2, δ(O2/N2) and δ13CO2 measurements from atmospheric flask samples. Flask samples are collected on a bi-weekly basis at the High Altitude Research Station Jungfraujoch in Switzerland for three European laboratories: the University of Bern, Switzerland, the University of Groningen, the Netherlands and the Max Planck Institute for Biogeochemistry in Jena, Germany. Almost 4 years of measurements of CO2, δ(O2/N2) and δ13CO2 are compared in this paper to assess the measurement compatibility of the three laboratories. While the average difference for the CO2 measurements between the laboratories in Bern and Jena meets the required compatibility goal as defined by the World Meteorological Organization, the standard deviation of the average differences between all laboratories is not within the required goal. However, the obtained annual trend and seasonalities are the same within their estimated uncertainties. For δ(O2/N2) significant differences are observed between the three laboratories. The comparison for δ13CO2 yields the least compatible results and the required goals are not met between the three laboratories. Our study shows the importance of regular intercomparison exercises to identify potential biases between laboratories and the need to improve the quality of atmospheric measurements.
Resumo:
Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.
Resumo:
The place-specific activity of hippocampal cells provides downstream structures with information regarding an animal's position within an environment and, perhaps, the location of goals within that environment. In rodents, recent research has suggested that distal cues primarily set the orientation of the spatial representation, whereas the boundaries of the behavioral apparatus determine the locations of place activity. The current study was designed to address possible biases in some previous research that may have minimized the likelihood of observing place activity bound to distal cues. Hippocampal single-unit activity was recorded from six freely moving rats as they were trained to perform a tone-initiated place-preference task on an open-field platform. To investigate whether place activity was bound to the room- or platform-based coordinate frame (or both), the platform was translated within the room at an "early" and at a "late" phase of task acquisition (Shift 1 and Shift 2). At both time points, CA1 and CA3 place cells demonstrated room-associated and/or platform-associated activity, or remapped in response to the platform shift. Shift 1 revealed place activity that reflected an interaction between a dominant platform-based (proximal) coordinate frame and a weaker room-based (distal) frame because many CA1 and CA3 place fields shifted to a location intermediate to the two reference frames. Shift 2 resulted in place activity that became more strongly bound to either the platform- or room-based coordinate frame, suggesting the emergence of two independent spatial frames of reference (with many more cells participating in platform-based than in room-based representations).
Resumo:
This study analyses the impact on the oceanic mean state of the evolution of the oceanic component (NEMO) of the climate model developed at Institut Pierre Simon Laplace (IPSL-CM), from the version IPSL-CM4, used for third phase of the Coupled Model Intercomparison Project (CMIP3), to IPSL-CM5A, used for CMIP5. Several modifications have been implemented between these two versions, in particular an interactive coupling with a biogeochemical module, a 3-band model for the penetration of the solar radiation, partial steps at the bottom of the ocean and a set of physical parameterisations to improve the representation of the impact of turbulent and tidal mixing. A set of forced and coupled experiments is used to single out the effect of each of these modifications and more generally the evolution of the oceanic component on the IPSL coupled models family. Major improvements are located in the Southern Ocean, where physical parameterisations such as partial steps and tidal mixing reinforce the barotropic transport of water mass, in particular in the Antarctic Circumpolar Current) and ensure a better representation of Antarctic bottom water masses. However, our analysis highlights that modifications, which substantially improve ocean dynamics in forced configuration, can yield or amplify biases in coupled configuration. In particular, the activation of radiative biophysical coupling between biogeochemical cycle and ocean dynamics results in a cooling of the ocean mean state. This illustrates the difficulty to improve and tune coupled climate models, given the large number of degrees of freedom and the potential compensating effects masking some biases.
Resumo:
The past 1500 years provide a valuable opportunity to study the response of the climate system to external forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving the understanding of climate dynamics. In this paper, a climate system model and proxy records are therefore used to study the role of natural and anthropogenic forcings in driving the global climate. The inverse and forward approaches to paleoclimate data–model comparison are applied, and sources of uncertainty are identified and discussed. In the first of two case studies, the climate model simulations are compared with multiproxy temperature reconstructions. Robust solar and volcanic signals are detected in Southern Hemisphere temperatures, with a possible volcanic signal detected in the Northern Hemisphere. The anthropogenic signal dominates during the industrial period. It is also found that seasonal and geographical biases may cause multiproxy reconstructions to overestimate the magnitude of the long-term preindustrial cooling trend. In the second case study, the model simulations are compared with a coral δ18O record from the central Pacific Ocean. It is found that greenhouse gases, solar irradiance, and volcanic eruptions all influence the mean state of the central Pacific, but there is no evidence that natural or anthropogenic forcings have any systematic impact on El Niño–Southern Oscillation. The proxy climate relationship is found to change over time, challenging the assumption of stationarity that underlies the interpretation of paleoclimate proxies. These case studies demonstrate the value of paleoclimate data–model comparison but also highlight the limitations of current techniques and demonstrate the need to develop alternative approaches.
Resumo:
Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle-atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle-atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1) is set up in a such way as to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km) to 0.017 hPa (75 km). For v1.1 the estimated systematic error is approximately 10% for all altitudes. At lower altitudes it is dominated by uncertainties in the calibration, with altitude the influence of spectroscopic and temperature uncertainties increases. The estimated random error increases with altitude from 5 to 25%. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels, and can therefore provide two measurements of the same air mass with independent instrumental noise. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random measurement error of v1.1. In this paper, the quality of v1.1 data is assessed for measurements obtained at two different locations: (1) a total of 25 months of measurements in the Arctic (Sodankylä, 67.37° N, 26.63° E) and (2) nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N, 7.46° E). For both locations MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the Arctic and to the ground-based radiometer MIAWARA for the mid-latitude campaigns. In general, all intercomparisons show high correlation coefficients, confirming the ability of MIAWARA-C to monitor temporal variations of the order of days. The biases are generally below 13% and within the estimated systematic uncertainty of MIAWARA-C. No consistent wet or dry bias is identified for MIAWARA-C. In addition, comparisons to the reference instruments indicate the estimated random error of v1.1 to be a realistic measure of the random variation on the retrieved profile between 45 and 70 km.