877 resultados para BANACH-SPACES
Resumo:
An Internet portal accessible at www.gdb.unibe.ch has been set up to automatically generate color-coded similarity maps of the ChEMBL database in relation to up to two sets of active compounds taken from the enhanced Directory of Useful Decoys (eDUD), a random set of molecules, or up to two sets of user-defined reference molecules. These maps visualize the relationships between the selected compounds and ChEMBL in six different high dimensional chemical spaces, namely MQN (42-D molecular quantum numbers), SMIfp (34-D SMILES fingerprint), APfp (20-D shape fingerprint), Xfp (55-D pharmacophore fingerprint), Sfp (1024-bit substructure fingerprint), and ECfp4 (1024-bit extended connectivity fingerprint). The maps are supplied in form of Java based desktop applications called “similarity mapplets” allowing interactive content browsing and linked to a “Multifingerprint Browser for ChEMBL” (also accessible directly at www.gdb.unibe.ch) to perform nearest neighbor searches. One can obtain six similarity mapplets of ChEMBL relative to random reference compounds, 606 similarity mapplets relative to single eDUD active sets, 30 300 similarity mapplets relative to pairs of eDUD active sets, and any number of similarity mapplets relative to user-defined reference sets to help visualize the structural diversity of compound series in drug optimization projects and their relationship to other known bioactive compounds.
Resumo:
Geographic health planning analyses, such as service area calculations, are hampered by a lack of patient-specific geographic data. Using the limited patient address information in patient management systems, planners analyze patient origin based on home address. But activity space research done sparingly in public health and extensively in non-health related arenas uses multiple addresses per person when analyzing accessibility. Also, health care access research has shown that there are many non-geographic factors that influence choice of provider. Most planning methods, however, overlook non-geographic factors influencing choice of provider, and the limited data mean the analyses can only be related to home address. This research attempted to determine to what extent geography plays a part in patient choice of provider and to determine if activity space data can be used to calculate service areas for primary care providers. ^ During Spring 2008, a convenience sample of 384 patients of a locally-funded Community Health Center in Houston, Texas, completed a survey that asked about what factors are important when he or she selects a health care provider. A subset of this group (336) also completed an activity space log that captured location and time data on the places where the patient regularly goes. ^ Survey results indicate that for this patient population, geography plays a role in their choice of health care provider, but it is not the most important reason for choosing a provider. Other factors for choosing a health care provider such as the provider offering "free or low cost visits", meeting "all of the patient's health care needs", and seeing "the patient quickly" were all ranked higher than geographic reasons. ^ Analysis of the patient activity locations shows that activity spaces can be used to create service areas for a single primary care provider. Weighted activity-space-based service areas have the potential to include more patients in the service area since more than one location per patient is used. Further analysis of the logs shows that a reduced set of locations by time and type could be used for this methodology, facilitating ongoing data collection for activity-space-based planning efforts. ^
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.