975 resultados para BACTERIAL UREOLYSIS
Resumo:
OBJECTIVE: (I) To compare the oral microflora at implant and tooth sites in subjects participating in a periodontal recall program, (II) to test whether the microflora at implant and tooth sites differ as an effect of gingival bleeding (bleeding on probing (BOP)), or pocket probing depth (PPD), and (III) to test whether smoking and gender had an impact on the microflora. MATERIAL AND METHODS: Data were collected from 127 implants and all teeth in 56 subjects. Microbiological data were identified by the DNA-DNA checkerboard hybridization. RESULTS: PPD> or =4 mm were found in 16.9% of tooth, and at 26.6% of implant sites (P<0.01). Tooth sites with PPD> or =4 mm had a 3.1-fold higher bacterial load than implant sites (mean difference: 66%, 95% confidence interval (CI): 40.7-91.3, P<0.001). No differences were found for the red, orange, green, and yellow complexes. A higher total bacterial load was found at implant sites with PPD> or =4 mm (mean difference 35.7 x 10(5), 95% CI: 5.2 (10(5)) to 66.1 (10(5)), P<0.02 with equal variance not assumed). At implant sites, BOP had no impact on bacterial load but influenced the load at tooth sites (P<0.01). CONCLUSION: BOP, and smoking had no impact on bacteria at implant sites but influenced the bacterial load at tooth sites. Tooth sites harbored more bacteria than implant sites with comparable PPD. The 4 mm PPD cutoff level influenced the distribution and amounts of bacterial loads. The subject factor is explanatory to bacterial load at both tooth and implant sites.
Comparison of bacterial plaque samples from titanium implant and tooth surfaces by different methods
Resumo:
Studies have shown similarities in the microflora between titanium implants or tooth sites when samples are taken by gingival crevicular fluid (GCF) sampling methods. The purpose of the present study was to study the microflora from curette and GCF samples using the checkerboard DNA-DNA hybridization method to assess the microflora of patients who had at least one oral osseo-integrated implant and who were otherwise dentate. Plaque samples were taken from tooth/implant surfaces and from sulcular gingival surfaces with curettes, and from gingival fluid using filter papers. A total of 28 subjects (11 females) were enrolled in the study. The mean age of the subjects was 64.1 years (SD+/-4.7). On average, the implants studied had been in function for 3.7 years (SD+/-2.9). The proportion of Streptococcus oralis (P<0.02) and Fusobacterium periodonticum (P<0.02) was significantly higher at tooth sites (curette samples). The GCF samples yielded higher proportions for 28/40 species studies (P-values varying between 0.05 and 0.001). The proportions of Tannerella forsythia (T. forsythensis), and Treponema denticola were both higher in GCF samples (P<0.02 and P<0.05, respectively) than in curette samples (implant sites). The microbial composition in gingival fluid from samples taken at implant sites differed partly from that of curette samples taken from implant surfaces or from sulcular soft tissues, providing higher counts for most bacteria studied at implant surfaces, but with the exception of Porphyromonas gingivalis. A combination of GCF and curette sampling methods might be the most representative sample method.
Resumo:
In a prospective randomized controlled double-blind study in 50 acutely injured patients, bacterially contaminated type 2-4 soft tissue wounds were treated with moist dressings of 0.2% Lavasept (fractionated polyhexamethylenbiguanide and macrogolum 4000) solution (n=28) in comparison with Ringer solution (n=22). Standardized swabs were taken on days 0, 2, 8 and 15 and investigated for microorganisms. For a quantitative evaluation, the number of colony forming units (CFU) was determined by a serial dilution technique. The tissue compatibility and anti-inflammatory effect were rated on a scale of 0 (=bad) to 3 (=very good). The most frequently found microorganism was Staphylococcus aureus, which was isolated from 13 wounds. Use of Lavasept led to a faster and significant reduction in microorganisms on the wound surfaces. The number of CFU per wound remained constant or decreased, in contrast to the wounds treated with Ringer solution. This was true for both Gram-positive and Gram-negative bacteria. There was no evidence of impaired wound healing in either group. The anti-inflammatory effect and the tissue compatibility of Lavasept were rated significantly better than that of Ringer solution. It is concluded that Lavasept combines antiseptic action with good tissue compatibility.
Resumo:
BACKGROUND: Periodontitis has been identified as a potential risk factor in cardiovascular diseases. It is possible that the stimulation of host responses to oral infections may result in vascular damage and the inducement of blood clotting. The aim of this study was to assess the role of periodontal infection and bacterial burden as an explanatory variable to the activation of the inflammatory process leading to acute coronary syndrome (ACS). METHODS: A total of 161 consecutive surviving cases admitted with a diagnosis of ACS and 161 control subjects, matched with cases according to their gender, socioeconomic level, and smoking status, were studied. Serum white blood cell (WBC) counts, high- and low-density lipoprotein (HDL/LDL) levels, high-sensitivity C-reactive protein (hsC-rp) levels, and clinical periodontal routine parameters were studied. The subgingival pathogens were assayed by the checkerboard DNA-DNA hybridization method. RESULTS: Total oral bacterial load was higher in the subjects with ACS (mean difference: 17.4x10(5); SD: 10.8; 95% confidence interval [CI]: 4.2 to 17.4; P<0.001), and significant for 26 of 40 species including Porphyromonas gingivalis, Tannerella forsythensis, and Treponema denticola. Serum WBC counts, hsC-rp levels, Streptococcus intermedius, and Streptococcus sanguis, were explanatory factors to acute coronary syndrome status (Nagelkerke r2=0.49). CONCLUSION: The oral bacterial load of S. intermedius, S. sanguis, Streptococcus anginosus, T. forsythensis, T. denticola, and P. gingivalis may be concomitant risk factors in the development of ACS.
Resumo:
Background: The information on bacterial colonization immediately after dental implant insertion is limited. Aims: (1) to assess the early colonization on titanium implants immediately post placement through the first12 post-surgical weeks , (2) to compare the microflora at interproximal subgingival implant and adjacent tooth sites. Material and Methods: Subgingival plaque samples from implant and neighbouring teeth were studied by checkerboard DNA-DNA hybridization before, 30 min. after implant placement , 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weerks after surgery. Results: Comparing bacterial loads at implant sites between 30 min. after placement with one week data showed that only the levels of V.parvula (p<0.05) differed with higher loads at week 1. Week 12 data demonstrated significantly higher bacterial loads for 15/40 species at tooth sites compared to pre-surgery (p < values varying between 0.05 and 0.01). Between immediately post-surgery and week 12 at implant sites 29/40 species were more commonly found at week 12. Included among these bacteria at implant sites were P.gingivalis (p< 0.05), T.forsythia, (p < 0.01), and T denticola (p<0.001). Immediately post-surgery 5.9% of implants, and 26.2% of teeth and at week 12, 15.0 % of implants, and 39.1% of teeth harbored S.aureus. Comparing tooth and implant sites, significantly higher bacterial loads were found at tooth sites for 27/40 species at the 30 minutes after placement interval. This difference increased to 35/40 species at week 12. Conclusions: The colonization of bacteria occurs within 30 minutes. Colonization patterns differed between implants and tooth surfaces.
Resumo:
BACKGROUND: Recurrent acute respiratory tract infections (ARTI) are a common problem in childhood. Some evidence suggests a benefit regarding the prevention of ARTI in children treated with the immunomodulator OM-85 BV (Bronchovaxom). METHODS: We summarised the evidence on the effectiveness of the immunomodulator OM-85 BV in the prevention of ARTI in children. We searched randomised comparisons of oral purified bacterial extracts against inactive controls in children with respiratory tract diseases in nine electronic databases and reference lists of included studies. We extracted salient features of each study, calculated relative risks (RR) or weighted mean differences (WMD) and performed meta-analyses using random-effects models. RESULTS: Thirteen studies (2,721 patients) of low to moderate quality tested OM-85 BV. Patients and outcomes differed substantially, which impeded pooling results of more than two trials. Two studies (240 patients) reporting on the number of patients with less than three infections over 6 month of follow-up in children not in day care showed a trend for benefit RR 0.82 (95% CI, 0.65-1.02). One out of two studies examining the number of children not in day care without infections over 4-6 month reported a significant RR of 0.42 (95% CI, 0.21-0.82) whereas the smaller, second study did not [RR 0.92 (95% CI, 0.58-1.46)]. Two studies reporting the number of antibiotic courses indicated a benefit for the intervention arm [WMD 2.0 (95% CI, 1.7-2.3)]. Two out of the three studies showed a reduction of length of episodes of 4-6 days whereas a third study showed no difference between the two groups. CONCLUSION: Evidence in favour of OM-85 BV in the prevention of ARTI in children is weak. There is a trend for fewer and shorter infections and a reduction of antibiotic use.
Resumo:
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Resumo:
Rumen-cannulated cows (n = 4) were fed successively silage made from either conventional or genetically modified (GM) maize. Results revealed no effects of GM maize on the dynamics of six ruminal bacterial strains (investigated by real-time PCR) compared to the conventional maize silage.
Resumo:
BACKGROUND: Information on bacterial colonization immediately after dental implant insertion is limited. AIMS: (1) To assess the early colonization on titanium implants immediately after placement and throughout the first 12 post-surgical weeks, (2) to compare the microbiota at interproximal subgingival implant and adjacent tooth sites. MATERIAL AND METHODS: Subgingival plaque samples from implant and neighbouring teeth were studied by checkerboard DNA-DNA hybridization before surgery, 30 min after implant placement, and 1, 2, 4, 8, and 12 weeks after surgery. RESULTS: Comparing bacterial loads at implant sites between 30 min after placement with 1-week data showed that only the levels of Veillonella parvula (P<0.05) differed with higher loads at week 1 post-surgically. Week 12 data demonstrated significantly higher bacterial loads for 15/40 species at tooth sites compared with pre-surgery (P-values varying between 0.05 and 0.01). Between the period immediately after surgery and 12 weeks at implant sites, 29/40 species was more commonly found at 12 weeks. Included among these bacteria at implant sites were Porphyromonas gingivalis (P<0.05), Tannerella forsythia, (P<0.01), and Treponema denticola (P<0.001). Immediately post-surgery 5.9% of implants, and 26.2% of teeth, and at week 12, 15% of implants, and 39.1% of teeth harbored Staphylococcus aureus. Comparing tooth and implant sites, significantly higher bacterial loads were found at tooth sites for 27/40 species after 30 min following implant placement. This difference increased to 35/40 species at 12 weeks post-surgically. CONCLUSIONS: Bacterial colonization occurred within 30 min after implant placement. Early colonization patterns differed between implant and tooth surfaces.
Resumo:
Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.
Resumo:
We have previously shown that antioxidants such as a-phenyl-tert-butyl nitrone or N-acetylcysteine attenuate cortical neuronal injury in infant rats with bacterial meningitis, suggesting that oxidative alterations play an important role in this disease. However, the precise mechanism(s) by which antioxidants inhibit this injury remain(s) unclear. We therefore studied the extent and location of protein oxidation in the brain using various biochemical and immunochemical methods. In cortical parenchyma, a trend for increased protein carbonyls was not evident until 21 hours after infection and the activity of glutamine synthetase (another index of protein oxidation) remained unchanged. Consistent with these results, there was no evidence for oxidative alterations in the cortex by various immunohistochemical methods even in cortical lesions. In contrast, there was a marked increase in carbonyls, 4-hydroxynonenal protein adducts and manganese superoxide dismutase in the cerebral vasculature. Elevated lipid peroxidation was also observed in cerebrospinal fluid and occasionally in the hippocampus. All of these oxidative alterations were inhibited by treatment of infected animals with N-acetylcysteine or alpha-phenyl-tert-butyl nitrone. Because N-acetylcysteine does not readily cross the blood-brain barrier and has no effect on the loss of endogenous brain antioxidants, its neuroprotective effect is likely based on extraparenchymal action such as inhibition of vascular oxidative alterations.
Resumo:
Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.
Resumo:
Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.
Resumo:
BACKGROUND: Calorimetry is a nonspecific technique which allows direct measurement of heat generated by biological processes in the living cell. We evaluated the potential of calorimetry for rapid detection of bacterial growth in cerebrospinal fluid (CSF) in a rat model of bacterial meningitis. METHODS: Infant rats were infected on postnatal day 11 by direct intracisternal injection with either Streptococcus pneumoniae, Neisseria meningitidis or Listeria monocytogenes. Control animals were injected with sterile saline or heat-inactivated S. pneumoniae. CSF was obtained at 18 hours after infection for quantitative cultures and heat flow measurement. For calorimetry, 10 microl and 1 microl CSF were inoculated in calorimetry ampoules containing 3 ml trypticase soy broth (TSB). RESULTS: The mean bacterial titer (+/- SD) in CSF was 1.5 +/- 0.6 x 108 for S. pneumoniae, 1.3 +/- 0.3 x 106 for N. meningitidis and 3.5 +/- 2.2 x 104 for L. monocytogenes. Calorimetric detection time was defined as the time until heat flow signal exceeded 10 microW. Heat signal was detected in 10-microl CSF samples from all infected animals with a mean (+/- SD) detection time of 1.5 +/- 0.2 hours for S. pneumoniae, 3.9 +/- 0.7 hours for N. meningitidis and 9.1 +/- 0.5 hours for L. monocytogenes. CSF samples from non-infected animals generated no increasing heat flow (<10 microW). The total heat was the highest in S. pneumoniae ranging from 6.7 to 7.5 Joules, followed by L. monocytogenes (5.6 to 6.1 Joules) and N. meningitidis (3.5 to 4.4 Joules). The lowest detectable bacterial titer by calorimetry was 2 cfu for S. pneumoniae, 4 cfu for N. meningitidis and 7 cfu for L. monocytogenes. CONCLUSION: By means of calorimetry, detection times of <4 hours for S. pneumoniae and N. meningitidis and <10 hours for Listeria monocytogenes using as little as 10 microl CSF were achieved. Calorimetry is a new diagnostic method allowing rapid and accurate diagnosis of bacterial meningitis from a small volume of CSF.