924 resultados para Autonomic Neuropathy
Resumo:
We here summarize five articles bringing new advances in our knowledge on neuropathic pain and put them into perspective with our current understanding. The first uses a mechanism-based approach with a capsaicin test to stratify patients suffering from painful diabetic neuropathy before starting a topical clonidine treatment. The second reviews disinhibition as a critical mechanism and a promising target for chronic pain. The third evokes neuroglial interactions and its implication regarding the interplay between injuries in childhood and hypersensitivity in adulthood. The last articles remind us that interventional therapies, not always very invasive, have a future potential in the therapy of frequent conditions such as head pain disorders.
Resumo:
Amyotrophic lateral sclerosis (ALS) is predominantly characterized by a progressive loss of motor function. While autonomic dysfunction has been described in ALS, little is known about the prevalence of lower urinary tract symptoms (LUTS) and intestinal dysfunction. We investigated disease severity, LUTS and intestinal dysfunction in 43 patients with ALS attending our outpatient department applying the ALS functional rating scale, the International Consultation on Incontinence Modular Questionnaire, the Urinary Distress Inventory and the Cleveland Clinic Incontinence Score. Results were compared to the German population of a cross-sectional study assessing LUTS in the healthy population, the EPIC study. Results showed that urinary incontinence was increased in patients with ALS aged ≥ 60 years compared to the EPIC cohort (female: 50%/19% (ALS/EPIC), p = 0.026; male: 36%/11% (ALS/EPIC), p = 0.002). No difference was seen at 40-59 years of age. Urge incontinence was the predominant presentation (73% of symptoms). A high symptom burden was stated (ICIQ-SF quality of life subscore 5.5/10). Intake of muscle relaxants and anticholinergics was associated with both urinary incontinence and severity of symptoms. Furthermore, a high prevalence of constipation (46%), but not stool incontinence (9%), was noted. In conclusion, the increased prevalence of urge incontinence and high symptom burden imply that in patients with ALS, LUTS should be increasingly investigated for.
Resumo:
Charcot-Marie-Tooth disease type 4C (CMT4C) is an early-onset, autosomal recessive form of demyelinating neuropathy. The clinical manifestations include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. The gene mutated in CMT4C disease, SH3TC2/KIAA1985, was recently identified; however, the function of the protein it encodes remains unknown. We have generated knockout mice where the first exon of the Sh3tc2 gene is replaced with an enhanced GFP cassette. The Sh3tc2(DeltaEx1/DeltaEx1) knockout animals develop progressive peripheral neuropathy manifested by decreased motor and sensory nerve conduction velocity and hypomyelination. We show that Sh3tc2 is specifically expressed in Schwann cells and localizes to the plasma membrane and to the perinuclear endocytic recycling compartment, concordant with its possible function in myelination and/or in regions of axoglial interactions. Concomitantly, transcriptional profiling performed on the endoneurial compartment of peripheral nerves isolated from control and Sh3tc2(DeltaEx1/DeltaEx1) animals uncovered changes in transcripts encoding genes involved in myelination and cell adhesion. Finally, detailed analyses of the structures composed of compact and noncompact myelin in the peripheral nerve of Sh3tc2(DeltaEx1/DeltaEx1) animals revealed abnormal organization of the node of Ranvier, a phenotype that we confirmed in CMT4C patient nerve biopsies. The generated Sh3tc2 knockout mice thus present a reliable model of CMT4C neuropathy that was instrumental in establishing a role for Sh3tc2 in myelination and in the integrity of the node of Ranvier, a morphological phenotype that can be used as an additional CMT4C diagnostic marker.
Resumo:
Lipids play crucial roles in many aspects of glial cell biology, affecting processes ranging from myelin membrane biosynthesis to axo-glial interactions. In order to study the role of lipid metabolism in myelinating glial cells, we specifically deleted in Schwann cells the Lpin1 gene, which encodes the Mg2+-dependent phosphatidate phosphatase (PAP1) enzyme necessary for normal triacylglycerol biosynthesis. The affected animals developed pronounced peripheral neuropathy characterized by myelin degradation, Schwann cell dedifferentiation and proliferation, and a reduction in nerve conduction velocity. The observed demyelination is mediated by endoneurial accumulation of the substrate of the PAP1 enzyme, phosphatidic acid (PA). In addition, we show that PA is a potent activator of the MEK-Erk pathway in Schwann cells, and that this activation is required for PA-induced demyelination. Our results therefore reveal a surprising role for PA in Schwann cell fate determination and provide evidence of a direct link between diseases affecting lipid metabolism and abnormal Schwann cell function
Resumo:
A five year program of systematic multi-element geochemical exploration of the Catalonian Coastal Ranges has been initiated by the Geological Survey of Autonomic Government of Catalonia (Generalitat de Catalunya) and the Department of Geological and Geophysical Exploration (University of Barcelona). This paper reports the first stage results of this regional survey, covering an area of 530 km2 in the Montseny Mountains, NE of Barcelona (Spain). Stream sediments for metals and stream waters for fluoride were chosen because of the regional characteristics. Four target areas for future tactic survey were recognized after the prospect. The most important is a 40 km* zone in the Canoves-Vilamajor area, with high base metal values accompanied by Cd, Ni, Co, As and Sb anomalies. Keywords: Catalanides. Geochemical exploration. Stream sediments. Base metal anomalies. Principal Component Analysis.
Resumo:
Background: Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results: Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. Conclusion: PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits proinflammatory and pro-thrombotic responses in healthy young men. [Authors]
Resumo:
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.
Resumo:
BACKGROUND: Dolichoectasia (elongation, dilatation and tortuosity) of the basilar artery can cause an isolated cranial neuropathy. The trigeminal nerve and facial nerve are most frequently affected. Dysfunction of one of the ocular motor cranial nerves due to basilar artery dolichoectasia is uncommon, and an isolated IVth (trochlear) nerve palsy has not been previously described in the literature. HISTORY AND SIGNS: Two men, ages 70 and 59 years, respectively, presented with vertical diplopia due to a IVth nerve palsy. In one patient, the onset of the IVth nerve palsy was painless and gradual and in the other patient, the onset was acute and associated with periorbital pain. Neuroimaging in both patients revealed pathological tortuosity of the basilar artery around the midbrain and displacement of the artery toward the side of the affected trochlear nerve. THERAPY AND OUTCOME: The patients were observed clinically. One patient had gradual worsening of his palsy for three and one-half years then suffered a stroke. The second patient whose IVth nerve palsy had an acute onset experienced spontaneous resolution of his palsy but later developed dysfunction of other cranial nerves. CONCLUSIONS: Basilar artery dolichoectasia should be considered in the differential diagnosis of an isolated IVth nerve palsy. The clinical course may be variable, and the prognosis is not always benign.
Resumo:
The purpose of this study was to assess the outcomes of 118 patients with eosinophilic granulomatosis with polyangiitis (EGPA) enrolled in 2 prospective, randomized, open-label clinical trials (1994-2005), with or without Five-Factor Score (FFS)-defined poor-prognosis factors, focusing on survival, disease-free survival, relapses, clinical and laboratory findings, therapeutic responses, and factors predictive of relapse. Forty-four patients with FFS ≥ 1 were assigned to receive 6 or 12 cyclophosphamide pulses plus corticosteroids and the seventy-four with FFS = 0 received corticosteroids alone, with immunosuppressant adjunction when corticosteroids failed. Patients were followed (2005-2011) under routine clinical care in an extended study and data were recorded prospectively. Mean ± SD follow-up was 81.3 ± 39.6 months. Among the 118 patients studied, 29% achieved long-term remission and 10% died. Among the 115 patients achieving a first remission, 41% experienced ≥1 relapses, 26.1 ± 26.8 months after treatment onset, with 57% of relapses occurring when corticosteroid-tapering reached <10 mg/day. Treatment achieved new remissions in >90%, but relapses recurred in 38%. Overall survival was good, reaching 90% at 7 years, regardless of baseline severity. Age ≥65 years was the only factor associated with a higher risk of death during follow-up. The risk of relapse was higher for patients with anti-myeloperoxidase antibodies and lower for those with >3000 eosinophils/mm(3). Sequelae remained frequent, usually chronic asthma and peripheral neuropathy. In conclusion, EGPA patients' survival rate is very good when treatment is stratified according to the baseline FFS. Relapses are frequent, especially in patients with anti-myeloperoxidase antibodies and baseline eosinophilia <3000/mm(3).
Resumo:
One of the most intriguing functions of the brain is the ability to learn and memorize. The mechanism through which memory and learning are expressed requires the activation of NMDA receptors (NMDARs). These molecular entities are placed at the postsynaptic density of excitatory synapses and their function is tightly controlled by the actions of several modulators at the extracellular, intracellular and pore sites. A large part of the intracellular modulation comes from the action of G-protein coupled receptors (GPCRs). Through intracellular cascades typically involving kinases and phosphatases, GPCRs potentiate or inhibit NMDARs, controlling the conductive state but also the trafficking within the synapse. The GPCRs are involved in the modulation of a variety of brain functions. Many of them control cognition, memory and learning performance, therefore, their effects on NMDARs are extensively studied. The orexinergic system signals through GPCRs and it is well known for the regulation of waking, feeding, reward and autonomic functions. Moreover, it is involved in potentiating hippocampus-related cognitive tasks. Orexin receptors and fibers are present within the hippocampus, but whether these directly modulate hippocampal cells and synapses has not yet been determined. During my thesis, I studied orexinergic actions on excitatory synaptic transmission via whole-cell patch-clamp recordings in rat acute hippocampal slices. I observed that exogenously applied orexin-A (ox-A) exerted a strong inhibitory action on NMDAR-mediated synaptic potentials at mossy fiber (MF)-CA3 synapses, by postsynaptically activating orexin-2 receptors, a minor inhibition at Schaffer collateral-CAl synapses and did not affect other synapses with the CA3 area. Moreover, I demonstrated that the susceptibility of NMDARs to ox- A depends on the tone of endogenous orexin known to fluctuate during the day-night cycle. In fact, in slices prepared during the active period of the rats, when endogenous orexin levels are high, NMDAR-currents were not affected by exogenously applied ox-A. The inhibitory effect of ox-A was, however, reverted when interfering with the orexinergic system through intraperitoneal injections of almorexant, a dual orexin receptor antagonist, during the active phase prior to slice preparation. This thesis work suggests that the orexinergic system regulates NMDAR-dependent information flow through select hippocampal pathways depending on the time-of-day. The specific orexinergic modulation of NMDARs at MFs dampens the excitability of the hippocampal circuit and could impede the mechanisms related to memory formation, possibly also following extended periods of waking. -- La capacité d'apprentissage et de mémorisation est une des fonctions les plus intrigantes de notre cerveau. Il a été montré qu'elles requièrent l'activation des récepteurs NMDA (NMDARs). Ces entités moléculaires sont présentes au niveau de la densité post-synaptique des synapses excitatrices et leur fonction est étroitement contrôlée par l'action de nombreux modulateurs au niveau extracellulaire, intracellulaire et membranaire de ces récepteurs. Une grande partie de la modulation intracellulaire s'effectue via l'action de récepteurs couplés aux protéines G (GPCRs). Grace à leurs cascades intracellulaires typiquement impliquant des kinases et des phosphatases, les GPCRs favorisent l'activation ou l'inhibition des NMDARs, contrôlant ainsi leur perméabilité mais aussi leur mouvement à la synapse. Les GPCRs sont impliquées dans de nombreuses fonctions cérébrales telles que la cognition, la mémoire ainsi que la capacité d'apprentissage c'est pour cela que leurs effets sur les NMDARs sont très étudiés. Le système orexinergique fait intervenir ces GPCRs et est connu par son rôle dans la régulation de fonctions physiologiques telles que l'éveil, la prise alimentaire, la récompense ainsi que d'autres fonctions du système nerveux autonome. De plus, ce système est impliqué dans la régulation de tâches cognitives liées à l'hippocampe. Bien que les fibres et les récepteurs à l'orexine soient présents dans l'hippocampe, leur mécanisme d'action sur les cellules et les synapses de l'hippocampe n'a pas encore été élucidé. Durant ma thèse, je me suis intéressée aux effets de l'orexine sur la transmission synaptique excitatrice en utilisant la méthode d'enregistrement en patch-clamp en configuration cellule entière sur des tranches aiguës d'hippocampes de rats. J'ai observé que l'application exogène d'orexine A d'une part inhibe fortement les courants synaptiques dépendants de l'activation des NMDARs au niveau de la synapse entre les fibres moussues et CA3 via l'activation post-synaptique des orexine récepteurs 2 mais d'autre part n'inhibe que de façon mineure la synapse entre les collatérales de Schaffer et CAI et n'affecte pas les autres synapses impliquant CA3. J'ai également démontré que la sensibilité des NMDARs à l'orexine A dépend de sa concentration endogène qui fluctue durant le cycle éveil-sommeil. En effet, lorsque les coupes d'hippocampes sont préparées durant la période active de l'animal correspondant à un niveau endogène d'orexine élevé, l'application exogène d'orexine A n'a aucun effet sur les courants dépendants de l'activation des NMDARs. Cependant, l'injection dans le péritoine, durant la phase active de l'animal, d'un antagoniste des orexine récepteurs, l'almorexant, va supprimer l'effet inhibiteur de l'orexine A. Les résultats de ma thèse suggèrent donc que le système orexinergique module les informations véhiculées par les NMDARs via des voies de signalisation sélectives de l'hippocampe en fonction du moment de la journée. La modulation orexinergique des NMDARs au niveau des fibres moussues diminue ainsi l'excitabilité du circuit hippocampal et pourrait entraver les mécanismes liés à la formation de la mémoire, potentiellement après de longues périodes d'éveil.
Resumo:
The pupil is one objective marker of vision and autonomic pathways. A good understanding of its anatomy and careful examination techniques are the essential tools for proper clinical diagnosis of pupillary disorders.
Resumo:
Introduction Exposure to hypoxia leads to several reactions of the organism, which try to compensate the reduced oxygen level in the blood. Acute response is characterized by an increase in pulmonary ventilation (Hypoxia Ventilatory Response, HVR) and in cardiac output (cardiac response to hypoxia). Heart rate (HR) at rest and during exercise is higher at high altitude than at sea level, whereas HRmax is lower. These cardiac adaptations are partially explained by an increased sympathetic stimulation associated with a reduced parasympathetic tone (12). The precise mechanisms of HRmax decline in acute hypoxia are however still to be identified, although several hypothesis have been suggested, such as a direct effect of hypoxia on the electrophysiological properties, an influence of skeletal maximal VO2 or a modulation of the autonomic nervous system (8). Some authors have reported that endurance trained athletes present an increased sensitivity to hypoxia shown by a large reduction in VO2max and an important decrease in arterial saturation. (9,11, 13) A hypoxia test can assess the sensibility of chemoreceptors to the reduction of oxygen by calculating hypoxic ventilatory and cardiac responses, knowing that low sensibility is correlated with poor acclimatization. Two parameters results from the differences in ventilation (and heart rate) divided by the difference in the arterial oxygen saturation between normoxia and hypoxia (18). Objective The hypothesis tested by this study is that parasympathetic reactivation after moderate effort in hypoxic condition can be used as a marker of individual sensibility to hypoxia. Parasympathetic reactivation is a marker of vagal tone that predict endurance capacity and aerobic fitness (2,7). Methods Subjects This study uses data obtained from two groups of athletes participating into two larger studies about adaptation to hypoxia. One group is composed of elite athletes (Swiss ski mountaineering team), the other one of mid-level athletes (ski mountaineering amateurs). The particularity of this target population is that they often train at high altitude, and therefore could show a better response to hypoxia than athleltes of other disciplines. Protocol The athletes performed a submaximal exercise (6min run at 9 km/h, flat) followed by 10 min of seated rest either in an hypoxic chamber (simulated altitude of 3000m) or in normoxic conditions. During the resting phase parasympathetic reactivation was assessed by beat-to-beat HR measurements.A test of tolerance to altitude was also performed. Analysis Parasympathetic reactivation, assessed by the calculation of the root mean square of successive differences in the R-R intervals (RMSSD)(4), is compared to individual responses at altitude, in order to appreciate the correlation between the two phenomena.
Resumo:
Introduction: The Thalidomide-Dexamethasone (TD) regimen has provided encouraging results in relapsed MM. To improve results, bortezomib (Velcade) has been added to the combination in previous phase II studies, the so called VTD regimen. In January 2006, the European Group for Blood and Marrow Transplantation (EBMT) and the Intergroupe Francophone du Myélome (IFM) initiated a prospective, randomized, parallel-group, open-label phase III, multicenter study, comparing VTD (arm A) with TD (arm B) for MM patients progressing or relapsing after autologous transplantation. Patients and Methods: Inclusion criteria: patients in first progression or relapse after at least one autologous transplantation, including those who had received bortezomib or thalidomide before transplant. Exclusion criteria: subjects with neuropathy above grade 1 or non secretory MM. Primary study end point was time to progression (TTP). Secondary end points included safety, response rate, progression-free survival (PFS) and overall survival (OS). Treatment was scheduled as follows: bortezomib 1.3 mg/m2 was given as an i.v bolus on Days 1, 4, 8 and 11 followed by a 10-Day rest period (days 12 to 21) for 8 cycles (6 months) and then on Days 1, 8, 15, 22 followed by a 20-Day rest period (days 23 to 42) for 4 cycles (6 months). In both arms, thalidomide was scheduled at 200 mg/Day orally for one year and dexamethasone 40 mg/Day orally four days every three weeks for one year. Patients reaching remission could proceed to a new stem cell harvest. However, transplantation, either autologous or allogeneic, could only be performed in patients who completed the planned one year treatment period. Response was assessed by EBMT criteria, with additional category of near complete remission (nCR). Adverse events were graded by the NCI-CTCAE, Version 3.0.The trial was based on a group sequential design, with 4 planned interim analyses and one final analysis that allowed stopping for efficacy as well as futility. The overall alpha and power were set equal to 0.025 and 0.90 respectively. The test for decision making was based on the comparison in terms of the ratio of the cause-specific hazards of relapse/progression, estimated in a Cox model stratified on the number of previous autologous transplantations. Relapse/progression cumulative incidence was estimated using the proper nonparametric estimator, the comparison was done by the Gray test. PFS and OS probabilities were estimated by the Kaplan-Meier curves, the comparison was performed by the Log-Rank test. An interim safety analysis was performed when the first hundred patients had been included. The safety committee recommended to continue the trial. Results: As of 1st July 2010, 269 patients had been enrolled in the study, 139 in France (IFM 2005-04 study), 21 in Italy, 38 in Germany, 19 in Switzerland (a SAKK study), 23 in Belgium, 8 in Austria, 8 in the Czech republic, 11 in Hungary, 1 in the UK and 1 in Israel. One hundred and sixty nine patients were males and 100 females; the median age was 61 yrs (range 29-76). One hundred and thirty six patients were randomized to receive VTD and 133 to receive TD. The current analysis is based on 246 patients (124 in arm A, 122 in arm B) included in the second interim analysis, carried out when 134 events were observed. Following this analysis, the trial was stopped because of significant superiority of VTD over TD. The remaining patients were too premature to contribute to the analysis. The number of previous autologous transplants was one in 63 vs 60 and two or more in 61 vs 62 patients in arm A vs B respectively. The median follow-up was 25 months. The median TTP was 20 months vs 15 months respectively in arm A and B, with cumulative incidence of relapse/progression at 2 years equal to 52% (95% CI: 42%-64%) vs 70% (95% CI: 61%-81%) (p=0.0004, Gray test). The same superiority of arm A was also observed when stratifying on the number of previous autologous transplantations. At 2 years, PFS was 39% (95% CI: 30%-51%) vs 23% (95% CI: 16%-34%) (A vs B, p=0.0006, Log-Rank test). OS in the first two years was comparable in the two groups. Conclusion: VTD resulted in significantly longer TTP and PFS in patients relapsing after ASCT. Analysis of response and safety data are on going and results will be presented at the meeting.
Resumo:
Detection of variations in blood glucose concentrations by pancreatic beta-cells and a subsequent appropriate secretion of insulin are key events in the control of glucose homeostasis. Because a decreased capability to sense glycemic changes is a hallmark of type 2 diabetes, the glucose signalling pathway leading to insulin secretion in pancreatic beta-cells has been extensively studied. This signalling mechanism depends on glucose metabolism and requires the presence of specific molecules such as GLUT2, glucokinase and the K(ATP) channel subunits Kir6.2 and SUR1. Other cells are also able to sense variations in glycemia or in local glucose concentrations and to modulate different physiological functions participating in the general control of glucose and energy homeostasis. These include cells forming the hepatoportal vein glucose sensor, which controls glucose storage in the liver, counterregulation, food intake and glucose utilization by peripheral tissues and neurons in the hypothalamus and brainstem whose firing rates are modulated by local variations in glucose concentrations or, when not protected by a blood-brain barrier, directly by changes in blood glucose levels. These glucose-sensing neurons are involved in the control of insulin and glucagon secretion, food intake and energy expenditure. Here, recent physiological studies performed with GLUT2-/- mice will be described, which indicate that this transporter is essential for glucose sensing by pancreatic beta-cells, by the hepatoportal sensor and by sensors, probably located centrally, which control activity of the autonomic nervous system and stimulate glucagon secretion. These studies may pave the way to a fine dissection of the molecular and cellular components of extra-pancreatic glucose sensors involved in the control of glucose and energy homeostasis.
Resumo:
The physiological processes that maintain body homeostasis oscillate during the day. Diurnal changes characterize kidney functions, comprising regulation of hydro-electrolytic and acid-base balance, reabsorption of small solutes and hormone production. Renal physiology is characterized by 24-h periodicity and contributes to circadian variability of blood pressure levels, related as well to nychthemeral changes of sodium sensitivity, physical activity, vascular tone, autonomic function and neurotransmitter release from sympathetic innervations. The circadian rhythmicity of body physiology is driven by central and peripheral biological clockworks and entrained by the geophysical light/dark cycle. Chronodisruption, defined as the mismatch between environmental-social cues and physiological-behavioral patterns, causes internal desynchronization of periodic functions, leading to pathophysiological mechanisms underlying degenerative, immune related, metabolic and neoplastic diseases. In this review we will address the genetic, molecular and anatomical elements that hardwire circadian rhythmicity in renal physiology and subtend disarray of time-dependent changes in renal pathology.