985 resultados para Augustana College (Rock Island, Ill.). Library.
Isotopic composition and Strontium/Calcium ratios of foraminifera of ODP Holes 113-689B and 113-690C
Resumo:
Oxygen and carbon isotopic ratios were measured from Maestrichtian benthic and planktonic foraminifer species and bulk carbonate samples from ODP Sites 689 and 690, drilled on the Maud Rise during Leg 113. Careful scanning electron microscope observations reveal that test calcite in some intervals was diagenetically altered, although Sr/Ca and isotopic ratios of these tests do not appear to have been modified significantly. Foraminifer d18O values at both sites document a cooling trend during early Maestrichtian time, a rapid drop in water temperatures at the time of the first appearance of Abathomphalus mayaroensis in the high southern latitude regions (about 69.9 Ma), and lower water temperatures during late Maestrichtian time. d13C values record a depletion in 13C in the latest early Maestrichtian time beginning at about 72.2 Ma, just prior to the sharp late Maestrichtian increase in d18O values. These trends are similar to those previously reported for well-preserved benthic foraminifer species from Seymour Island, in the Antarctic Peninsula. Paleotemperature estimates are also comparable to those at Seymour Island and suggest temperate climatic conditions in Antarctica and that bottom waters in the southern South Atlantic region were of Antarctic origin. Benthic and planktonic foraminifer 613C values fluctuate sympathetically and are higher in upper Maestrichtian sediments than in the lower Maestrichtian sequence.
Resumo:
The paper is based on new results of melt inclusion studies in minerals. Physicochemical and geochemical parameters of plateau basalt magmatic systems of the Siberian Platform and Ontong Java Plateau (Pacific Ocean) have been established. The studied melts are enriched in Fe. That differs them from magmatic melts of mid-ocean ridges (MOR). A comparative analysis of data on inclusions has shown a similarity of continental and oceanic plateau basalt magmatic systems. They considerably differ from those of MOR and intraplate oceanic islands. Crystallization of oceanic plateau basalts took place at lower temperatures and pressures as compared with similar rocks of the Siberian Platform. The data on inclusions evidence that the melts of the Siberian Platform and the Malaita Island underwent a serious evolution in contrast to magmas of the Nauru Basin that have more stable geochemical parameters. The most fractionated low-temperature high-Fe magmas with elevated contents of trace and rare-earth elements occur in the Malaita Island (Ontong Java Plateau) magmatic system.
Resumo:
Four retrogressive thaw slumps (RTS) located on Herschel Island and the Yukon coast (King Point) in the western Canadian Arctic were investigated to compare the environmental, sedimentological and geochemical setting and characteristics of zones in active and stabilised slumps and at undisturbed sites. In general, the slope, sedimentology and biogeochemistry of stabilised and undisturbed zones differ, independent of their age or location. Organic carbon contents were lower in slumps than in the surrounding tundra, and the density and compaction of slump sediments were much greater. Radiocarbon dating showed that RTS were likely to have been active around 300 a BP and are undergoing a similar period of increased activity now. This cycle is thought to be controlled more by local geometry, cryostratigraphy and the rate of coastal erosion than by variation in summer temperatures.
Resumo:
Petrography, major and trace elements, mineral chemistry, and Sr, Nd, and Pb isotopic ratios are reported for igneous rocks drilled on the northern flank of the North d'Entrecasteaux Ridge (NDR) during Ocean Drilling Program (ODP) Leg 134 Site 828. These rocks comprise a breccia unit beneath a middle Eocene foraminiferal ooze. Both geophysical characteristics and the variety of volcanic rocks found at the bottom of Holes 828A and 828B indicate that a very immature breccia or scree deposit was sampled. Basalts are moderately to highly altered, but primary textures are well preserved. Two groups with different magmatic affinities, unrelated to the stratigraphic height, have been distinguished. One group consists of aphyric to sparsely plagioclase + clinopyroxene-phyric basalts, characterized by high TiO2 (~2 wt%) and low Al2O3 (less than 15 wt%) contents, with flat MORB-normalized incompatible element patterns and LREE-depleted chondrite-normalized REE patterns. This group resembles N-MORB. The other group comprises moderately to highly olivine + plagioclase-phyric basalts with low TiO2 (<1 wt%) and high Al2O3 (usually >15 wt%) contents, and marked HFSE depletion and LFSE enrichment. Some lavas in this group are picritic, with relatively high modal olivine abundances, and MgO contents up to 15 wt%. Both the basalts and picritic basalts of this group reflect an influence by subduction-related processes, and have compositions transitional between MORB and IAT. Lavas with similar geochemical features have been reported from small back-arc basins such as the Mariana Trough, Lau Basin, Sulu Sea, and the North Fiji Basin and are referred to as back-arc basin basalts. However, regional tectonic considerations suggest that the spreading that produced these backarc basin basalts may have occurred in the forearc region of the southwest-facing island arc that existed in this region in the Eocene.
Resumo:
Gabbroic xenoliths and diverse megacrysts (e.g., clinopyroxenes, amphiboles and plagioclases), which correspond to the lithology ranging from gabbro-norite to gabbro, occur in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea. The gabbroic xenoliths consist primarily of moderate-K2O plagioclase, Ti-Al-rich clinopyroxene and CaO-rich orthopyroxene; additionally, TiO2-rich amphibole (kaersutite) and Ti-Fe oxides might or might not be present. The plagioclase is the most dominant phase (approx. 60-70 vol.%). The xenoliths and megacrysts provide evidence for the modal metasomatism of the lower continental crust by the mafic magmas during the Pleistocene. The coarse grain size (up to 5 mm), moderate Mg# [=100xMg/(Mg+Fe(total)) atomic ratio] of pyroxenes (70-77) and textural features (e.g., poikilitic) indicate that the gabbroic xenoliths are consistent with a cumulus origin. The clinopyroxenes from these xenoliths are enriched in REE with smooth convex-upward MREE patterns, which are expected for cumulus minerals formed from a melt enriched in incompatible trace elements. The strikingly similar major and trace element variations and the patterns of constituent minerals clearly indicate a genetic link between the gabbroic xenoliths (plus megacrysts) and the host basalt, indicating that the xenoliths belong to the Jeju Pleisto-Holocene magma system. On the basis of the textural features, the mineral equilibria and the major and trace element variations, the xenoliths appear to have crystallized from basaltic melts at the reservoir-roof environment within the lower crust (4-7 kbars) above the present Moho estimates beneath Jeju Island, where the xenoliths represent wall rocks. Following the consolidation of the xenolith lithologies, volatile- and incompatible element-enriched melt/fluid, as metasomatic agents, infiltrated through the grain boundaries and/or cracks and reacted with the preexisting anhydrous phases, which produced the metasomatic amphiboles. This volatile-enriched melt/fluid could have evolved from the initially anhydrous compositions to the volatile-saturated compositions by the active fractional crystallization in the Jeju Pleisto-Holocene magma system. This process was significant in that it was a relatively young event and played an important role in the formation of the hydrous minerals and the metasomatization of the lower continental crust, which is a plume-impacted area along the Asian continental margin. The major and trace element analyses of the mineral phases from the xenoliths were performed to define the principal geochemical characteristics of the crustal lithosphere segment represented by the studied xenoliths.
Resumo:
Upper Miocene to Pleistocene hemipelagites and resedimented facies recovered at Holes 976B and 977A (Leg 161) in the Alboran Basin consist mainly of biogenic and detrital components, with a minor contribution of neoformed mineral phases. Diagenetic processes have not obliterated the primary deposition signal, and therefore detrital components (quartz, feldspar, detrital dolomite, rock fragments, and clays) provide information about source rocks and provenances. No major bulk or clay mineralogy differences were recognized between resedimented and hemipelagic facies; in fact, similar mineral assemblages in both types of facies suggest common source rocks. However, mineral abundance fluctuations can be related to climate variations and tectonic factors, as the main controls of sediment fill of this basin. A marked increase in smectites in Messinian sediments suggests an extensive development of soils during that time, probably favored by the alternation of wet and dry climate episodes and the relative aridification of the Mediterranean borderlands. A notable increase in detrital components suggests a sea-level fall and/or tectonic uplift during the late Pliocene. The significant increase in detrital dolomite in the uppermost Pliocene deposits suggests the uplift of dolomite-rich rocks as source areas. Mineral components in Pleistocene sediments indicate increasing tectonic stability, and clay-mineral fluctuations during the Pleistocene can be related not only to tectonic events, but also to alternating cooling and warming periods.
Resumo:
The mineralogy of both bulk- and clay-sized fractions of samples from Sites 671, 672, and 674 of ODP Leg 110 was determined by X-ray diffraction. The major minerals include quartz, calcite, plagioclase feldspar, and the clay minerals smectite, illite, and kaolinite. The smectite is a dioctahedral montmorillonite and is derived primarily from degradation of volcanic ash. Percentage of smectite varies with sediment age; Miocene and Eocene sediments are the most smectite-rich. High smectite content tends to correlate with elevated porosity, presumably because of the ability of smectite clays to absorb significant amounts of interlayer water. Because of a change in physical properties, the decollement zone at Site 671 formed in sediments immediately subjacent to a section of smectite-rich, high-porosity, Miocene-age sediments. Sediments above the decollement at Site 671, as well as all sediments analyzed from Sites 672 and 674, contain nearly pure smectite characteristic of the alteration of volcanic ash. Within the decollement zone and underthrust sequence, however, the smectite contains up to 65% illite interlayers. Although the illite/smectite could be interpreted as detrital clay derived from South America, its absence in the sediments stratigraphically equivalent to the decollement and underthrust sequences at Sites 672 and 674 favors the interpretation that it originated by diagenetic alteration of pre-existing smectite similar to that in the overlying sediments. A significant percentage of the freshening of the pore waters observed in these zones could be due to the water released during smectite dehydration.
Resumo:
During Ocean Drilling Program Leg 126, we recovered three expanded Pleistocene sections from the active backarc rift (Sumisu Rift) and three expanded Oligocene-Miocene sections from the forearc basin of the Izu-Bonin volcanic island arc. Quantitative analysis of the Pleistocene nannofossils revealed five major assemblages between 0 and LO Ma: Assemblage 1 (Holocene-0.085 Ma) contains dominant Emiliania huxleyi; Assemblage 2 (ca. 0.085-0.275 Ma) contains dominant small Gephyrocapsa and common E. huxleyi and Gephyrocapsa oceanica; Assemblage 3 (ca. 0.275-0.6 Ma) contains dominant Gephyrocapsa caribbeanica; Assemblage 4 (ca. 0.6-0.9 Ma) contains a peak abundance of small Gephyrocapsa in the middle part, and dominant occurrences of two types of G. caribbeanica in the lower and upper parts; and Assemblage 5 (ca. 0.9-1.0 Ma) contains dominant small Gephyrocapsa and common G. caribbeanica and Reticulofenestra asanoi. These assemblages are largely synchronous with similar assemblages recognized from tropical and subtropical regions, and can be used for finer subdivision of the Pleistocene than that based on standard Pleistocene nannofossil datums. The Oligocene-Miocene sections contain several hiatuses: up to 3 m.y. may be missing from the uppermost Oligocene (Zone CP19) at Sites 792 and 793; all of Zone CN2 is missing at Sites 792 and 793; part of Zone CN3 and all of Zone CN4 are missing at Site 792. Biochronology of several nannofossil datums at Leg 126 sites indicate that Sphenolithus distentus, Sphenolithus ciperoensis, Cyclicargolithus floridanus, and Discoaster kugleri have diachronous occurrences compared with other sites in the western Pacific Ocean and Philippine Sea.
Resumo:
Although scientific evidence prior to that from ODP Leg 119 indicates the presence of an ice sheet on East Antarctica by at least the earliest Oligocene, the question as to the size and stability of that initial ice sheet is still contested. Current hypotheses include (1) the presence of a small ice sheet in the earliest Oligocene with stepwise growth during the Neogene, (2) the presence of a continental-sized ice sheet in the late middle Eocene with no major evidence of subsequent deglaciation, and (3) the presence of glacial ice in the earliest Oligocene with a major ice sheet during the mid-Oligocene, followed by growth and decay of several ice sheets with characteristics similar to the temperate ice sheets of the Pleistocene of North America but with changes over a longer time scale (millions of years vs. 100,000 yr). Principal results from Leg 119 suggest the presence of significant late middle and late Eocene glaciation in East Antarctica and the presence of a continental-size ice sheet in East Antarctica during the earliest Oligocene. Although the Leg 119 results provide only glimpses of the Neogene glacial history of East Antarctica, they do provide evidence of fluctuations in the extent of the ice sheet and the waxing and waning of glaciers across the Prydz Bay shelf during the later part of the late Miocene and Pliocene.
Resumo:
This report presents short-wave infrared spectroscopic data acquired from both core and powdered samples collected during Ocean Drilling Program Leg 193, from Holes 1188A, 1188F, and 1189A, using a Portable Infrared Mineral Analyzer reflectance spectrometer. The distribution of alteration minerals detected using this method for each site is presented.
Resumo:
In the southeast of the Bolshoi Lyakhovsky Island there are outcrops of tectonic outliers composed of low-K medium-Ti tholeiitic basic rocks represented by low altered pillow basalts, as well as by their metamorphosed analogs: amphibolites and blueschists. The rocks are depleted in light rare-earth elements and were melted out of a depleted mantle source enriched in Th, Nb, and Zr also contributed to the rock formation. The magma sources were not affected by subduction-related fluids or melts. The rocks were part of the Jurassic South Anyui ocean basin crust. The blueschists are the crust of the same basin submerged beneath the more southern Anyui-Svyatoi Nos arc to depth of 30-40 km. Pressure and temperature of metamorphism suggest a setting of "warm" subduction. Mineral assemblages of the blueschists record time of a collision of the Anyui-Svyatoi Nos island arc and the New Siberian continental block expressed as a counter-clockwise PT trend. The pressure jump during the collision corresponds to heaping of tectonic covers above the zone of convergence 12 km in total thickness. Ocean rocks were thrust upon the margin of the New Siberian continental block in late Late Jurassic - early Early Cretaceous and mark the NW continuation of the South Anyui suture, one of the main tectonic sutures of the Northeastern Asia.